另外,在传统的统计学分析当中,比如对市场情况的分析,我们要结合实际的环境和背景来解读数据和分析数据,我们并不把数据当成唯一的和万能的指引。所以,这里面就存在人根据经验和实际情况进行 数据分析 的过程,而人参与分析的能力是很重要的。
2、什么样的事情是 大数据 做不到的,而传统的调查分析方法却可以做到?
大数据 营销的前提是 大数据 分析,而 大数据 分析是基于 算法 的,是计算机固化的模式。也就是说,原来由人对 数据分析 的那部分工作,现在我们把它约定到 算法 里了。并且, 大数据 精准营销是对用户产生的网络浏览数据、分享数据、搜索数据等等行为信息进行分析,从而对人群或事物进行分类,并由此推测人的偏好、兴趣等。
但是,偏好不等于真实需求,点击不代表一定喜欢。一个人今天在社交媒体上说:“这个产品不错”,就认为他一定喜欢或一定需要这个产品吗?
机器可以对行为分类,但却不能真正探测到人的心理和真实需求。那么,对于人的真实心理和需求的探测,我们如何做到?这时候,传统的市场调查和分析方法是不可取代的。比如,深度访谈法,比如焦点小组访谈法,投射法等等。这些方法都可以在最大程度上,从心理学的角度去分析和发现,人真正的欲望和本质需求。所以,今天很多大的广告公司、营销公司,他们仍然采用这样传统的方法去了解表面数据背后的故事和原因。而这些故事和原因,是 算法 目前没办法做到的,必须由人来完成。人和人的交流才能探测人的内心。
从这个角度来说, 大数据 并不是万能的,也不能被一味神话,我们必须清晰的认识到它的实质,它能用来干什么,不能用来干什么。我们可以这样理解:人对数据的计算和分析工作如今可能会被机器替代,但是,人的另一部分工作(探测人内心的能力)没办法被 算法 替代。
比如,前两年我曾报道过《写书都可以用 算法 实现自动化了,拿什么挽救出版》这样的新技术,据称目前亚马逊上大量图书都是被 算法 写出来的, 算法 会根据人写书的逻辑思路来组织语言。但是,这些书却不能弥补人类情感的缺失,不能表达出社会背景和作者所处环境带来的情感波动等等。
五、 大数据 分析或 大数据 营销面临的真正挑战是什么?
1、数据冗余问题,有没有必要用这么多数据?
数据源问题,数据质量有无保障,是否是真正所需?
大数据 分析一直被人称颂的优点就是:海量数据的运用。但是,数据是不是越多越好?如何筛选这些数据?如何找到有价值和有用的数据?数据的庞大和冗余会对 大数据 分析造成什么样的影响?
对于 大数据 而言,巨量的数据来源是分析准确性的根本保证。但是,数据量大到一定程度后也面临着很大问题:想要保证准确度就变的困难了。这样就难以保障分析结果的准确性了。 大数据 分析和预测失败的例子也有很多。比如,最典型和著名的一个便是谷歌预测流感趋势失败的案例。
报道称,谷歌是基于搜索引擎数据进行的分析,其分析结果与美国疾病防控中心的监测数据相差近两倍。尽管谷歌不断调整 算法 ,但仍不能保证结果的准确性。这就说明一个重要问题:数据源问题。谷歌是基于搜索引擎上的搜索词来分析的,许多搜索词都是无效的,没有任何意义的,所以它们不能真的代表流感趋势,但它们同样被计算在内。这就造成了结果的严重偏差。
所以,你弄到的这些数据,如何保障它们的确是你所需的?的确是重要的?如果数据源出现了严重偏差,那么你的分析再精准,那么也是徒劳。比如,你花费了大量精力去搜集 互联网 用户产生的日常分享信息,你对他们的所有信息都进行分析,结果预测出几种消费趋势。但是,这些分享信息中有大量冗余信息,数据精准度很差,许多都是跟消费没有关系的,那么这种分析结果很可能就是不准确的。你按照这种结果进行下一步营销战略当然可能是失败的。
2、大佬平台的游戏,普通企业难掌握大量数据;难检验可信性
各大 互联网 公司平台掌握着用户资源,用户产生的信息当然也被聚集在各平台内。但是,各家公司或平台的数据并不会完全向公众开放。我们只能通过某些工具抓取到网络上散落的信息,但不能准确掌握完整的有实际价值和意义的后台数据和信息。
而这些海量信息,对于像谷歌这样的大 互联网 公司来说,就是宝藏。 大数据 或许只是这些大佬平台的游戏,普通企业比较难参与进来。
并且,这些平台之间并不互通和开放,他们分析出来的数据结果得不到第三方的验证和检验,我们就无法知道他们 大数据 分析结果的有效性和可信性。当然,他们将这些 数据分析 用户自身产品开发和自身发展上还是很有价值的。所以,普通人或普通企业对于 大数据 的渴望或许是奢望。将来 互联网 大平台公司或许会售卖 大数据 分析的服务,这很有可能。并且,未来,个人数据管理领域的创新和创业将会增加,应用也会增多。
另外,目前 大数据 分析的 算法 还没有标准,也没有公认和统一有效的工具。
所以,从以上这些方面看, 大数据 分析和 大数据 营销还有很长的路要走。我们需要正确、理性地看待 大数据 。