随着 互联网 ,特别是移动 互联网 的不断发展, 互联网 金融也在给传统金融业带来不小的冲击,不过, 互联网 金融是否会对银行等传统机构构成威胁仍无法得出定论。但是,这并不表示银行业可以忽视这股冲击的浪潮,在这个 大数据 不断壮大的时代,传统金融业如何利用 大数据 来不断创新与变革,如何借助 大数据 降低金融风险,提升客户体验,进而挖掘客户价值最大化是每个企业都应该深入思考的问题。
如某金融全牌照集团公司希望学习美国花旗集团对已有客户价值挖掘最大化的经验,对现有保险客户进行深度分析,通过对已有客户的 大数据 分析及问卷调查来细分人群、刻画人群需求特征,从而制定针对不同客户群体的集保险、银行、投资、证券、资产管理、信托等一揽子综合金融产品策略,为客户提供一站式财务金融解决方案,以期得到每个客户最大价值。
在选用 大数据 解决方案后,通过分析已有保险客户数据及外部调研问卷,将人群细分为统计学上显著区别的人群;根据群体规模、年龄、性别、教育水平、家庭特征、现阶段的收入、消费、理财等行为模式以及他们所处的生命与财富阶段,精准分析群体的需求动因后制定有针对性的产品策略及营销策略。
但是,面对来势汹汹的 互联网 企业,传统金融业们也在加快步伐,但还是没有 互联网 企业动作快。目前, 互联网 金融业正从单纯的支付业务向转账汇款、跨境结算、小额信贷、现金管理、资产管理、供应链金融、基金和保险代销、信用卡还款等传统银行业务领域渗透。除了存款,银行的主要业务几乎已遇到全面挑战。 互联网 金融正在叫板传统金融,传统金融业又该何去何从?值得思考。
精准营销 加速 互联网 金融冲刺
在国外, 大数据 金融领域的应用相对成熟,我们先来回顾一下在美国做得非常典型的 大数据 金融的三大案例。
人们习惯性地认为,只有银行才能建立信用体系,然而在 大数据 时代, 互联网 公司运用 大数据 控制信贷风险已初露端倪。
在进行数据处理之前,对业务的理解、对数据的理解非常重要,这决定了要选取哪些数据源进行 数据挖掘 ,而且越来越多的 互联网 在线动态 大数据 被添加进来。例如一个虚假的借款申请人信息就可以通过分析网络行为痕迹被识别出来,一个真实的 互联网 用户总会在网络上留下蛛丝马迹。对征信有用的数据的时效性也非常关键,通常被征信行业公认的有效的动态数据通常是从现在开始倒推24个月的数据。
通过多渠道获得的数据来源,利用数学运算和统计学的模型进行分析,从而评估出借款者的信用风险,典型的企业是美国的ZestFinance。这家企业的大部分员工是数据科学家,他们并不特别地依赖于信用担保行业,用 大数据 分析进行风险控制是ZestFinance的核心技术。他们的原始数据来源非常广泛。 他们的数据工厂的核心技术和机密是他们开发的10个基于学习机器的分析模型,对每位信贷申请人的超过1万条原始信息数据进行分析,并得出超过7万个可对其行为做出测量的指标,而这一过程在5秒钟内就能全部完成。事实上,在美国,征信公司或者大 数据挖掘 公司的产品不仅用于提供给相关企业用于降低金融信贷行业的风险,同时也用于帮助做决策判断和市场营销。
还有,利用社交网站的 大数据 进行网络借贷的典型是美国的Lending Club。Lending club于2007年5月24日在facebook上开张,通过在上面镶嵌的一款应用搭建借贷双方平台。利用社交网络关系数据和朋友之间的相互信任聚合人气。借款人被分为若干信用等级,但是却不必公布自己的信用历史。
还有 一家在美国为网上商家提供金融信贷服务的公司Kabbage,于2010年4月上线,主要目标客户是ebay、Amazon、PayPal等电商。它的奇特之处在于,其通过获取ebay等公司的网店店主的销售、信用记录、顾客流量、评论、商品价格和存货等信息,以及他们在Facebook和Twitter上与客户的互动信息,借助 数据挖掘 技术,把这些店主分成不同的风险等级,以此来确定提供贷款金额数量与贷款利率水平,风险过高则拒绝,风险高低与利率成正比,与贷款金额成反比。
显然,若以银行体系来评价这类网上商家大多数都不符合银行的贷款资格,不过在 互联网 时代,Kabbage的案例说明了运用大量数据足以支撑这些小微企业信用评价体系。当然,Kabbage的这种模式也在国内被成功运用,其中,宜信的 互联网 金融产品就是以 互联网 为获客主要渠道,除了借贷信用记录,还结合 大数据 分析技术,捕捉来自大众点评、豆瓣等社交网络上的有用信息,帮助信用审核人员多维度分析借款客户的信用状况。
大数据 对于 互联网 金融的助推作用首要体现在寻找合适的目标用户,实现精准营销。 互联网 金融领域的新创企业或做贷款,或卖产品,凭借高额收益率,手续费优惠,吸引用户选择自己。然而,在越来越多同类企业吹响混战号角的同时, 互联网 金融企业也不得不面对来自同行业的竞争。欲在竞争激烈的市场中占有一席之地, 互联网 金融企业需要更精准地定位产品,并推送给自己的目标人群。谁是潜在的购买者?如何找到他们?并让他们产生兴趣?精准营销的实现程度是 互联网 金融企业存活与崛起的关键所在,这个领域虽然未达到成熟的发展状态,但确实已经有了一些有参考价值的营销案例。如:
大数据 通过动态定向技术查看 互联网 用户近期浏览过的理财网站,搜索过的关键词,通过浏览数据建立用户模型,进行产品实时推荐的优化投放,直击用户所需。
其次就是风控。通过分析大量的网络交易及行为数据,可对用户进行信用评估,这些信用评估可以帮助 互联网 金融企业对用户的还款意愿及还款能力做出结论,继而为用户提供快速授信及现金分期服务。
事实上一个人或一个群体的信用好坏取决于诸多变量,如收入,资产,个性,习惯等,且呈动态变化状态。可以说数据在个人信用体系中体现为芝麻信用,它便于解决陌生人之间以及商业交易场景中最基本的身份可信性问题,以及帮助 互联网 金融产品和服务的提供者识别风险与危机。这些数据广泛来源于网上银行,电商网站,社交网络,招聘网,婚介网,公积金社保网站,交通运输网站,搜索引擎,最终聚合形成个人身份认证,工作及教育背景认证,软信息(包括消费习惯,兴趣爱好,影响力,社交网络)等维度的信息。