爱吧机器人网 » 技术 > 大数据 > 正文

美国大数据工程师面试攻略有哪些?

 

大数据 相关技术

 

我个人热爱 大数据 ,在硅谷这也是大家津津乐道的,有个笑话,big data is like teenage sex: everyone talks about it, nobody really knows how to do it. 其实大家还是兴趣驱动就好,不要那么功利, 大数据 技术涉及太多,平常工作中也是慢慢积累,有无数的坑和技术细节需要克服。并不是说那个技术最热就要用哪个,如果你用不好,你的压力很大的,举个例子,你用某个开源数据库,发现它偶尔有数据丢失怎么办,如果这是线上服务,你不断收到报警,这时候你当时选用它的优点 scalable,容错性都没意义了。

 

接着说 大数据 ,这里面Hadoop作为行业标准,我面过的除了Google,微软不用,几乎所有的公司都在用,建议大家利用这个机会。这里面有三巨头,Cloudera是老牌Hadoop咨询公司,Hadoop的创始人做CTO,Hortonworks也是很多Hadoop的committee,MapR是提出hdfs的erasure 编码方式高效而著名,它们都是融了巨资,模式也很像,先推出社区免费版,但有个商业版提供更好的管理。 而今年出现一匹黑马Spark,简单说就是内存级别的计算,比Hadoop框架里能节约IO,利用缓存,能适应批处理,迭代,流式计算。

 

 

这里看一下它的生态系统,如何学Hadoop是个循序渐进过程,先要理解学习它的Core系统,HDFS, MapReduce, Common,在外围有无数的系统工具方便开发,我个人用过的是Avro作为数据格式,Zookeeper作为选主的高可靠性的组件,Solr作为搜索接口,Pig搭建工作流,Hive 数据仓库查询,Oozie管理工作流,HBase 作为KV分布式存储,Mahout 数据挖掘 的库,Cassandra nosql 数据库。我建议初学的考虑Chinahadoop的课程。

 

而Hadoop本身也是个进化过程,几年前0.19版本,到0.20、0.23分流成Yarn架构,最后进化成Hadoop2.0, Hadoop1.0 和 2.0 它们的接口和组件是完全不同的,但总体上Hadoop 2.0 是趋势,因为它有Yarn这样分离的资源管理平台,可以以插件的方式开发上面的Application,解放了生产力,而像Spark,Storm这些新型处理器也是支持Hadoop 2.0的。

 

 

这里是Hortonworks它们提出来的社区版本架构,可以说标准的制定者,一流的公司制定标准,其他的公司一般用只能用它们提供的稳定版,没有多少话语权。但从事 大数据 ,并不见得是要去这些制定标准的公司,大量的应用也是非常考验架构的灵活性,并且能看到实际的产品,很有成就感。

 

 

说到2014年火的,还是要看Spark。已经开了2届Spark大会,上千人的规模,无数人对比Hadoop 100倍的性能提升而兴奋。这里说它的背景是诞生于Berkeley的Amplab,它们有个很有名的BDAS(Berkeley Data Analytics Stack),目前Spark已经成为Apache的顶级项目。去年这个实验室的教授跟学生出去成立Databricks公司,拉到两轮上千万的风投,有人问Spark是Hadoop的终结者吗?我看2014年Spark大会上,所有的Hadoop大佬公司都是鼎力支持,像Cloudrea甚至放弃Impala的一线支持而转变成Spark。

 

如果这么发展下去,星星之火可以燎原埃它里面用到Scala是一种函数式语言。里面的组件也很多,有Shark支持SQL类似Hive,有Spark Streaming、MLlib、Graphx、SparkR、BlinkDB。它的核心数据结构是RDD,可以跑在各种分布式系统上。总体上是个包容性+侵略性的系统。我个人也很看好它们的发展。

 

 

我在Linkedin做过一些 大数据 的广告系统,我就简单提一些我学到的。

 

  1. Linkedin有特有的开源数据系统,包括Voldermort (分布式KV存储), Kafka (分布式实时消息队列),Espresso (基于mysql的海量存储),Databus(数据变化捕捉),可以查看https://data.linkedin.com

  2. Lambda架构,离线使用Hadoop做pipeline,near online做高效聚合,提供混合式架构,达到实时和一致性的妥协。

  3. Kafka在linkedin起到奠基作用,一方面所有实时tracking都是通过它,另一方面 data bridge,比如图中通过kafka可以实现数据的无缝衔接,否则很难想像每个数据源异构系统,它们的通信将是 n^2 级别的复杂度。

  4. 分布式并不酷,如果考虑到高可靠性,强一致性而数据量并不是想像的大,不见得要使用;否则自讨苦吃。尽量使用成熟的,可靠的,例如MySQL, Memcached

     

     

求职经验

 

根据我的求职经验,我给出几点建议:

上一页1234下一页

上一篇:玩转大数据 运动员如何用科技提升成绩
下一篇:药物研发新手段:谷歌用大数据搞淬炼
精选推荐
7种常见的机器人焊接类型
7种常见的机器人焊接类型

[2017-12-17]  机器人焊接是工业领域最常见的机器人应用之一,近几十年来主要由汽车行业驱动。机器人焊接在完成大批量,重复性的焊接任务时效率最高。...

美国喷气推进实验室的AI驱动无人机挑战人类飞行员
美国喷气推进实验室的AI驱动无人机挑战人类飞行员

[2017-12-08]  随着无人机及其组件越来越小,效率越来越高,功能越来越强大,我们已经看到越来越多的研究开始让无人机自主飞行在半结构化的环境中,而不依赖于外部定位。 宾夕法尼亚大学在......

谷歌《Nature》发论文称实现量子霸权 18亿倍速碾压世界最强超算
谷歌《Nature》发论文称实现量子霸权 18亿倍速碾压世界最强超算

[2019-10-23]  谷歌坚称自己已经取得了量子霸权——这标志着计算研究领域的一个重要里程碑。谷歌首次发布声明是在今年9月,虽然遭到竞争对手的质疑,但就 ...

农业将为高科技行业 农业机器人的应用领域
农业将为高科技行业 农业机器人的应用领域

[2017-12-17]  农业正在迅速成为一个令人兴奋的高科技产业,吸引了新专业人士,新公司和新投资者。技术发展迅速,不仅提高了农民的生产能力,而且促进了我们所知道的机器人和自动化技术的发展。...

基于生物启发的机器人很容易适应丢失附属器官
基于生物启发的机器人很容易适应丢失附属器官

[2017-12-17]  很多机器人被设计应用在危险环境,如灾难现场。在这些地方,他们的运动系统完全有可能被损坏。那这样会吓跑这些机器人吗?也许不是,如果它们像日本的东北和北海道大学创造的......

麻省理工又秀神技:推出如魔法般跳跃的方块机器人集群
麻省理工又秀神技:推出如魔法般跳跃的方块机器人集群

[2019-10-31]  几天前,小编向大家介绍过麻省理工(MIT)研发的一种自组装机器人集群(点此阅览),它们可以用统一标准的小单元自动组装出各种大型结构。 ...

机器人从工业走向家庭  库卡KUKA目标是引领中国市场
机器人从工业走向家庭 库卡KUKA目标是引领中国市场

[2017-12-08]  机器人正在改变着人们的生活方式,而库卡KUKA想要在中国这个大蛋糕中占有一块大份额,库卡公司正在引领市场...

集群机器人领域最新研究:一种用于探测未知环境的微型无人机群
集群机器人领域最新研究:一种用于探测未知环境的微型无人机群

[2019-10-26]  (图:无人机扩散至不同方向来探索环境。当一个无人机注意到另一个无人机在它的首选方向,它将试图飞到另一个方向。若首选方向冲突,低优先 ...

本周栏目热点

从Facebook社交媒体情绪实验看大数据道德困境

[1970-01-01]   今年曝光的Facebook私自进行社交媒体用户情绪实验的新闻引起了不小的争议,这把很多数据实验卷入到社会 ...

那些年,曾经被我们误读的大数据

[1970-01-01]   如今,业界和学术界一直在热议大数据,不管是学术圈还是IT圈,只要能谈论点儿大数据就显得很高大上。然 ...

[1970-01-01]   今天Fivethirtyeight(以数据为主的时政分析博客)的博主,美国著名政治评论家、 大数据 领域的超人Nate ...

未来农业将在田里处理大数据

[1970-01-01]   基普·汤姆(Kip Tom)是第7代家庭农场主,他的农场种植的主要农作物是玉米和大豆,他同时也在进行玉 ...

大数据时代的美国隐私权保护制度

[1970-01-01]   2014年5月,美国总统执行办公室(Executive Office of the President)发布2014年全球大数据白皮书 ...