爱吧机器人网 » 技术 > 大数据 > 正文

大数据将怎样改写人才命运

微软公司的一位副总裁说: 大数据 与 云计算 就像一枚钢镚儿的两个面,相辅相成。 大数据 相当于储有海量信息的信息库; 云计算 相当于计算机和操作系统。 大数据 与 云计算 二者结合起来,将给世界带来一场深刻的管理技术革命。当然,人才工作也包括在内。

A.让人才培养不再凭直觉

人才培养要靠教育与培训。但是以往一个很大的弊端是,教师不知道学生和学员是不是真正把课听懂了。如果问一声大家懂了吗?一般回答都会说懂了。这里就掩盖了有的学生、学员因为羞于回答不懂而带来的难堪。利用 大数据 方法,教师通过学生、学员反馈回来的作业,就可以发现到底是哪些学生、学员并没有真正听懂,进而有针对性地加以辅导。 大数据 还可以告诉教师,如果有相当一批学生、学员做错了作业,就是自己在教学方法上存在问题,需要加以改进。

中国金花李娜在 澳网公开赛女单决赛 中捧起冠军杯的事,令国人好一阵振奋。那么,李娜为什么能够获得第二次大满贯呢?不少国人就不大清楚了。原来,李娜的成功在很大程度上凭借了 大数据 。其教练卡洛斯就曾明确表示,是 大数据 帮助她提升了能力,从而更好地指导了李娜的表现。

原来,网球比赛与其他体育项目一样,涉及大量数据,主要是 一发成功率 一发得分率 以及ACE球,这些是标志竞技水平的关键指标。发球速度、发球成功率、得分点则突出体现了球员的打法特点。在教练过程中,如果 非受迫性失误 双发失误率 上升,则表明球员心理状态或体力开始下滑。 大数据 对这些信息均有统计,因此能够使教练与球员自己评价比赛技术发挥的好坏。而在比赛过程中, 大数据 又能帮助教练与球员制定正确的策略与战术。IBM研制的智能分析平台,能够基于过去8年的赛事数据,对每个球员的历史记录进行分析,确定出每个球员的关键指标。每场比赛分析的数据超过4100万个,包括比分、回合数、制胜分、发球速度、击球类型、击球数量等。而这些数据都是通过给球员配备的传感器获取的。 数据分析 专家说,在信息化高速发展的今天,完全依靠天赋和直觉成才的日子,已经一去不复返。

B.帮助组织准确发现人才

世界如此之大,面对茫茫人海,谁是企业某个岗位最合适的人选?这个问题在以往很难解决,但是在今天却有了可能。方法就是依靠 大数据 。

世界著名的跨国人力资源公司,都搜集掌握了海量的人才数据库。这种数据库分门别类,汇聚了大量可供深入了解某个 职位要求 与某个人 个人信息 是否对称的资料,这就为人才寻访活动提供了优越的前提条件。当前,我们国内的人力资源公司之所以不能与国外发达国家的人力资源公司相抗衡,问题就出在我们没有建成这样海量信息的人才信息库。所以,人家在世界上 猎头 ,而我们在国内 猎腰 猎脚 。

其实,不仅是体育人才,就是合适的高端 科技 人才、高技能人才我们也在到处寻觅,但往往苦于找不到,来不了。过去人们常说,要改变 少数人在少数人中选人 的现象,可是如何改变?归根结底是因为缺少技术支持。今天这个问题有了解决之道,那就是利用 大数据 方法,从所有应该搜索的范围内去搜寻、定位、选择。

C.使管理走向精细化

大家知道,农业社会的管理风格比较粗放化,而到了工业社会,开始走向精细化。精细化才能管理到位,提高效能。高等院校课堂大、学生多,谁来上课了、谁没来不大容易搞清楚,所以就有人钻这个空子逃课干别的事。据麦可思对2012级新生的一项调查显示,本科新生的逃课率为33%,高职新生的逃课率则为22%。为了阻止这种 瘟疫 的蔓延,不少高校纷纷请出各种 点名神器 。

美国高校也曾遇到这种现象,对付的办法形形色色。最简单的是教授点名、逐个签到,这适合学生较少的情况,如若几百名学生一起上大课,就不灵光了。后来,有教授把一种叫clicker的神器引入课堂,学生只要在课堂上按一下,系统就会自动记录下其出勤情况。当然,这个神器还可以用来为学生释疑解惑,一举多得。

去年,暨南大学在部分试点教室安装了 教学辅导系统 ,该系统拥有座位实名定位、抢答老师提问等功能。这个系统能够让教师在第一时间掌握班级学生出勤情况,还能了解每个学生掌握所学知识的情况,还可以把要讨论的问题投影到大屏幕上,让学生按键回答,提升了教学效果。

近年来,随着智能手机的发展,App在校园中开始发挥提高学校综合管理能力的重要作用。有方便起床的、饮食的、读书的、选课的,点名功能自然也在其中。不需要纸笔,不需要刷卡,学生只要带着手机进入教室,系统就会自动记录考勤。应该说,是 大数据 、 云计算 使一些很难管理到位的事情,做到了精准到位,又十分人性化。

D.客观评价人才

人才有类别层次之分。对科学研究、教育学术、文化卫生等专业技术人才来说,有的需要通过论文或著作体现出来的学术水平来获得正确评价。那些诺贝尔奖得主是世界级的人才,对他们的发现与评价就更难了。

然而,世界著名的汤森路透公司,去年曾经准确地预测到谁是该年度的获奖者,准确率高达8/11。

他们是怎么预测准确的呢?途径就是凭借 大数据 。他们说: 预测的力量来自于引文分析,因为论文之间的引用是基于每个科研人员的学术判断,因而引文数据库就蕴藏了全球科学家的群体判断,并反映出科研活动的延续性和知识的传承。基于 大数据 的信息分析能够为 科技 规划和决策提供多方面的支持,包括了解 科技 革命的趋势,发现机会和风险,制订合理的发展目标指标,和根据评估研发投入的产出情况来优化资源的分配等。

汤森路透知识产权与 科技 中国区总裁郭利还表示说: 目前我们看到数据库中的高被引论文里,中国的贡献在增多。如果按照这个趋势,我希望中国在10到15年左右能够获得诺奖。 从这里也可看出, 大数据 在人才发现、预测、预判方面确实可以大显身手。

上一页12下一页

上一篇:从大数据到小数据,数据之坑与美
下一篇:D-Future大会带您用数据揭密 “气象+”
精选推荐
揭秘达芬奇手术机器人
揭秘达芬奇手术机器人

[2018-04-19]  达芬奇手术系统是由美国Intuitive Surgical公司制造的机器人手术系统。美国食品和药物管理局(FDA)于2000年通过该标准,旨在利用微创手段 ...

农业将为高科技行业 农业机器人的应用领域
农业将为高科技行业 农业机器人的应用领域

[2017-12-17]  农业正在迅速成为一个令人兴奋的高科技产业,吸引了新专业人士,新公司和新投资者。技术发展迅速,不仅提高了农民的生产能力,而且促进了我们所知道的机器人和自动化技术的发展。...

MIT用深度学习处理3D点云数据 应用于无人汽车等领域
MIT用深度学习处理3D点云数据 应用于无人汽车等领域

[2019-10-23]  如果你见过自动驾驶汽车,也许会对车顶上那个一直在旋转的圆柱体感到好奇。这是一个雷达传感器,无人驾驶汽车依靠它在现实世界中进行导航。 ...

苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展
苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展

[2017-12-11]  苹果隐秘的自动驾驶汽车项目多年来一直在转移焦点,但今年似乎正在加速。 4月份,公司获得了在加利福尼亚州进行自动驾驶汽车测试的许可证,而在6月份,苹果公司首席执行官库......

深度神经网络揭示了大脑喜欢看什么
深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...

MIT最新“人机”互连系统 让双腿机器人复制人体技能
MIT最新“人机”互连系统 让双腿机器人复制人体技能

[2019-11-01]  MIT的小爱马仕想借用你的大脑 ,图片来自: João Ramos爱吧机器人网消息,麻省理工学院(MIT)的研究人员展示了一种新型遥操作系 ...

美国Natilus公司试飞水上无人货机 设计简单成本降低
美国Natilus公司试飞水上无人货机 设计简单成本降低

[2017-12-28]  Natilus创业公司成立于2014年,其梦想是建造大型无人机,以半价提供比船舶快得多国际货运。在十二月份,Natilus计划在旧金山湾测试一个9米翼展的小型原型无人机的水上滑行能力......

南加州大学机器人学家:机器人更适合粗暴的爱
南加州大学机器人学家:机器人更适合粗暴的爱

[2019-11-07]  图片来自JOHN MADERE GETTY IMAGES打是疼骂是爱,当人类粗暴的将物体从机器人手中敲掉,看似残忍,实际上却能帮助机器人找到最好的握持物 ...

本周栏目热点

[1970-01-01]   这可能是未来最具发展潜力的职业之一,我们从职场角度为你解读如何成为 大数据 工程师,以及它的职业发展 ...

从Facebook社交媒体情绪实验看大数据道德困境

[1970-01-01]   今年曝光的Facebook私自进行社交媒体用户情绪实验的新闻引起了不小的争议,这把很多数据实验卷入到社会 ...

大数据时代的美国隐私权保护制度

[1970-01-01]   2014年5月,美国总统执行办公室(Executive Office of the President)发布2014年全球大数据白皮书 ...

那些年,曾经被我们误读的大数据

[1970-01-01]   如今,业界和学术界一直在热议大数据,不管是学术圈还是IT圈,只要能谈论点儿大数据就显得很高大上。然 ...

未来农业将在田里处理大数据

[1970-01-01]   基普·汤姆(Kip Tom)是第7代家庭农场主,他的农场种植的主要农作物是玉米和大豆,他同时也在进行玉 ...