爱吧机器人网 » 技术 > 机器学习 > 正文

【强化学习干货】《深度学习与机器人学》大牛Pieter Abbeel 105页PPT下载


作者:Pieter Abbeel
编辑:肖琴


【新智元导读】2019年开启之际,美国加州大学伯克利分校教授、机器人与强化学习领域专家 Pieter Abbeel 发布了一份资源大礼:《深度学习与机器人学》105页PPT。这份PPT整理自Abbeel教授2018年受邀参加的69个演讲,内容涵盖监督学习、强化学习和无监督学习的重要进展,以及深度学习的主要应用等方面,有助于读者对深度学习和机器人学有一个宏观的理解。

Pieter Abbeel教授从AI近年的一些“热论”讲起,从马斯克认为AI是人类文明面临的最大威胁、普京说“谁能成为 AI 领域的领袖,谁就将成为世界的主宰者”,概述了近年来AI的热潮:NIPS等顶会的参会人数达到史上最高、arxiv上AI领域的论文翻倍增长。

报告的主体部分是“深度学习成功”,详细介绍了监督学习、强化学习和无监督学习的重要进展。Pieter Abbeel教授对这三个概念的解释如下:

  • 监督学习:模式识别,如果有足够多的数据(input -> output pairs),那么神经网络就能够学习模式;
  • 强化学习:通过试错的过程,学习目标导向的行为
  • 无监督学习:没有明确的监督的条件下,学习世界的结构
最后,报告展示了深度学习的一系列应用。



PPT下载地址:

https://www.dropbox.com/s/dw4kmxkrv3orujd/2018_12_xx_Abbeel--AI.pdf?dl=0

Pieter Abbeel教授简介



Pieter Abbeel,加州大学伯克利分校教授、机器人学习实验室主任,伯克利人工智能研究(BAIR)实验室联合主任。

Pieter Abbeel是机器人和强化学习领域的大牛。Pieter Abbeel 2008年从斯坦福大学获得博士学位,师从百度前首席科学家 Andrew Ng(吴恩达),毕业后在UC Berkeley任教。

2016~2017年,Pieter Abbeel加入Open AI,任研究科学家。现在则是Open AI顾问。

Pieter Abbeel还是两家AI公司的创始人,Gradescope和covariant.ai。Gradescope开发为家庭作业、课题研究、试卷等打分的AI系统;covariant.ai开发机器人自动化的AI系统,在制造/仓储/电子商务/物流等领域应用。

Pieter Abbeel 的研究重点特别集中于如何让机器人向人类学习(学徒学习),如何让机器人通过自己的试错过程学习(强化学习),以及如何通过从learning-to-learn(元学习)过程中加快技能获取。他开发的机器人已经学会了先进的直升机特技飞行、打结、基本装配、叠衣服、移动、以及基于视觉的机器人操作。



机器人叠毛巾

Pieter Abbeel目前的主要研究方向:机器人和机器学习,特别关注深度强化学习、深度模仿学习、深度无监督学习、元学习、learning-to-learn、以及AI安全。

PPT全文













































































































































































































PPT下载地址:

https://www.dropbox.com/s/dw4kmxkrv3orujd/2018_12_xx_Abbeel--AI.pdf?dl=0



上一篇:2018机器学习和AI最大突破没找到,但我发现了最大障碍!
下一篇:恶意的机器学习如何破坏人工智能?
精选推荐
MIT研制出可以像植物一样生长的机器人
MIT研制出可以像植物一样生长的机器人

[2019-11-09]  麻省理工学院开发了一种新型机器人,这种机器人可以本质上自我延伸,其生长方式与植物幼苗向上生长的方式惊人相似。值得注意的是,研究人员 ...

人工智能民主化能否实现取决于科技巨头
人工智能民主化能否实现取决于科技巨头

[2017-12-29]  我们经常听到像谷歌和微软这样的公司说他们希望人工智能民主化。这是一个很好的词,民主化。 但这些公司如何界定“民主化”还不清楚,像AI本身一样,它似乎有点炒作的味道...

亚马逊CEO杰夫·贝佐斯操控巨型有人驾驶机器人(巨型机甲)
亚马逊CEO杰夫·贝佐斯操控巨型有人驾驶机器人(巨型机甲)

[2017-03-21]  近日,亚马逊CEO杰夫·贝佐斯实现了每一个6岁儿童都会有的梦想,他控制了一个巨大的机甲机器人。据国外媒体Verge报道,前天(3月19日),贝 ...

研究人员融合人类与AI的创造力 显著提高了深度学习的表现
研究人员融合人类与AI的创造力 显著提高了深度学习的表现

[2019-10-12]  由加拿大人工智能领域研究主席、滑铁卢大学系统设计工程教授Alexander Wong领导的一个团队开发了一种新型紧凑型神经网络家族,可以在智能 ...

[2018-01-26]  纽约时报的报道,德国的研究人员已经开发出一种长约七分之一英寸的机器人,首先看起来不过是一小块橡皮条。然后它开始移动。机器人走路,跳跃,爬行,滚动和游泳。它甚至爬出......

全自动膝关节置换手术机器人被美国FDA批准上市
全自动膝关节置换手术机器人被美国FDA批准上市

[2019-10-14]  美国Think Surgical公司已获得美国食品和药物管理局(FDA)的批准,在美国销售用于全膝关节置换(TKA)的TSolution One®全膝关节应用 ...

谷歌《Nature》发论文称实现量子霸权 18亿倍速碾压世界最强超算
谷歌《Nature》发论文称实现量子霸权 18亿倍速碾压世界最强超算

[2019-10-23]  谷歌坚称自己已经取得了量子霸权——这标志着计算研究领域的一个重要里程碑。谷歌首次发布声明是在今年9月,虽然遭到竞争对手的质疑,但就 ...

什么是机器人学?机器人学简介
什么是机器人学?机器人学简介

[2017-12-14]  机器人学是工程学与科学的交叉学科,包括机械工程,电气工程,计算机科学等。机器人技术涉及机器人的设计、制造、操作和应用,以及用于控制、感官反馈和信息处理的计算机系统。...

本周栏目热点

盘点全球十大最具影响力的机器人摇篮

[1970-01-01]    人工智能(AI)研究现正迅速发展,如无人驾驶汽车、计算机在《危险边缘》智力竞赛节目中获胜、数字私人助手Siri、GoogleNow和语音助手C ...

深度学习反向传播算法(BP)原理推导及代码实现

[2017-12-19]  分析了手写字数据集分类的原理,利用神经网络模型,编写了SGD算法的代码,分多个epochs,每个 epoch 又对 mini_batch 样本做多次迭代计算。这其中,非常重要的一个步骤,......

如何在机器学习项目中使用统计方法的示例

[2018-07-23]  事实上,机器学习预测建模项目必须通过统计学方法才能有效的进行。在本文中,我们将通过实例介绍一些在预测建模问题中起关键作用的统计学方法。...

[2017-08-28]  模拟退火(Simulated Annealing,简称SA)是一种通用概率算法,用来在一个大的搜寻空间内找寻命题的最优解。1、固体退火原理:将固体加温 ...

Machine Learning-感知器分类算法详解

[2018-05-31]  今天我们来讲解的内容是感知器分类算法,本文的结构如下:什么是感知器分类算法,在Python中实现感知器学习算法,在iris(鸢尾花)数据集上训练一个感知器模型,自适应线性神......