爱吧机器人网 » 技术 > 机器学习 > 正文

【强化学习干货】《深度学习与机器人学》大牛Pieter Abbeel 105页PPT下载


作者:Pieter Abbeel
编辑:肖琴


【新智元导读】2019年开启之际,美国加州大学伯克利分校教授、机器人与强化学习领域专家 Pieter Abbeel 发布了一份资源大礼:《深度学习与机器人学》105页PPT。这份PPT整理自Abbeel教授2018年受邀参加的69个演讲,内容涵盖监督学习、强化学习和无监督学习的重要进展,以及深度学习的主要应用等方面,有助于读者对深度学习和机器人学有一个宏观的理解。

Pieter Abbeel教授从AI近年的一些“热论”讲起,从马斯克认为AI是人类文明面临的最大威胁、普京说“谁能成为 AI 领域的领袖,谁就将成为世界的主宰者”,概述了近年来AI的热潮:NIPS等顶会的参会人数达到史上最高、arxiv上AI领域的论文翻倍增长。

报告的主体部分是“深度学习成功”,详细介绍了监督学习、强化学习和无监督学习的重要进展。Pieter Abbeel教授对这三个概念的解释如下:

  • 监督学习:模式识别,如果有足够多的数据(input -> output pairs),那么神经网络就能够学习模式;
  • 强化学习:通过试错的过程,学习目标导向的行为
  • 无监督学习:没有明确的监督的条件下,学习世界的结构
最后,报告展示了深度学习的一系列应用。



PPT下载地址:

https://www.dropbox.com/s/dw4kmxkrv3orujd/2018_12_xx_Abbeel--AI.pdf?dl=0

Pieter Abbeel教授简介



Pieter Abbeel,加州大学伯克利分校教授、机器人学习实验室主任,伯克利人工智能研究(BAIR)实验室联合主任。

Pieter Abbeel是机器人和强化学习领域的大牛。Pieter Abbeel 2008年从斯坦福大学获得博士学位,师从百度前首席科学家 Andrew Ng(吴恩达),毕业后在UC Berkeley任教。

2016~2017年,Pieter Abbeel加入Open AI,任研究科学家。现在则是Open AI顾问。

Pieter Abbeel还是两家AI公司的创始人,Gradescope和covariant.ai。Gradescope开发为家庭作业、课题研究、试卷等打分的AI系统;covariant.ai开发机器人自动化的AI系统,在制造/仓储/电子商务/物流等领域应用。

Pieter Abbeel 的研究重点特别集中于如何让机器人向人类学习(学徒学习),如何让机器人通过自己的试错过程学习(强化学习),以及如何通过从learning-to-learn(元学习)过程中加快技能获取。他开发的机器人已经学会了先进的直升机特技飞行、打结、基本装配、叠衣服、移动、以及基于视觉的机器人操作。



机器人叠毛巾

Pieter Abbeel目前的主要研究方向:机器人和机器学习,特别关注深度强化学习、深度模仿学习、深度无监督学习、元学习、learning-to-learn、以及AI安全。

PPT全文













































































































































































































PPT下载地址:

https://www.dropbox.com/s/dw4kmxkrv3orujd/2018_12_xx_Abbeel--AI.pdf?dl=0



上一篇:2018机器学习和AI最大突破没找到,但我发现了最大障碍!
下一篇:恶意的机器学习如何破坏人工智能?
精选推荐
英国首台月球车是个小型四腿机器人 将于2021年登月
英国首台月球车是个小型四腿机器人 将于2021年登月

[2019-10-12]  探测器将用四条腿探测月球表面,并将数据传回着陆器,后者将把数据传回地球图 詹姆斯温斯皮尔英国即将成为继美国、俄罗斯、中国之后的又一 ...

一个让深度学习惨败的通用人工智能领域——语境处理
一个让深度学习惨败的通用人工智能领域——语境处理

[2019-11-04]  Context是指用来解释一段给定文本或语句的来源框架,我们可以翻译为上下文或语境。维基百科将context定义为:*在符号学、语言学、社会学和 ...

Crossbar将电阻式RAM推入嵌入式AI
Crossbar将电阻式RAM推入嵌入式AI

[2018-05-17]  电阻RAM技术开发商Crossbar表示,它已与航空航天芯片制造商Microsemi达成协议,允许后者在未来的芯片中嵌入Crossbar的非易失性存储器。此举是在先进制造业节点的领先代工厂选......

研究人员融合人类与AI的创造力 显著提高了深度学习的表现
研究人员融合人类与AI的创造力 显著提高了深度学习的表现

[2019-10-12]  由加拿大人工智能领域研究主席、滑铁卢大学系统设计工程教授Alexander Wong领导的一个团队开发了一种新型紧凑型神经网络家族,可以在智能 ...

瑞士研发出微型机器人集群 可像蚂蚁一样互相交流并协同工作
瑞士研发出微型机器人集群 可像蚂蚁一样互相交流并协同工作

[2019-07-12]  EPFL(瑞士联邦理工学院)的研究人员受到了蚂蚁的启发,开发了一款仅有10克重的小型机器人:他们可以相互交流,分配角色并完成复杂的任务。 ...

美国喷气推进实验室的AI驱动无人机挑战人类飞行员
美国喷气推进实验室的AI驱动无人机挑战人类飞行员

[2017-12-08]  随着无人机及其组件越来越小,效率越来越高,功能越来越强大,我们已经看到越来越多的研究开始让无人机自主飞行在半结构化的环境中,而不依赖于外部定位。 宾夕法尼亚大学在......

农业将为高科技行业 农业机器人的应用领域
农业将为高科技行业 农业机器人的应用领域

[2017-12-17]  农业正在迅速成为一个令人兴奋的高科技产业,吸引了新专业人士,新公司和新投资者。技术发展迅速,不仅提高了农民的生产能力,而且促进了我们所知道的机器人和自动化技术的发展。...

7种常见的机器人焊接类型
7种常见的机器人焊接类型

[2017-12-17]  机器人焊接是工业领域最常见的机器人应用之一,近几十年来主要由汽车行业驱动。机器人焊接在完成大批量,重复性的焊接任务时效率最高。...

本周栏目热点

盘点全球十大最具影响力的机器人摇篮

[1970-01-01]    人工智能(AI)研究现正迅速发展,如无人驾驶汽车、计算机在《危险边缘》智力竞赛节目中获胜、数字私人助手Siri、GoogleNow和语音助手C ...

深度学习反向传播算法(BP)原理推导及代码实现

[2017-12-19]  分析了手写字数据集分类的原理,利用神经网络模型,编写了SGD算法的代码,分多个epochs,每个 epoch 又对 mini_batch 样本做多次迭代计算。这其中,非常重要的一个步骤,......

如何在机器学习项目中使用统计方法的示例

[2018-07-23]  事实上,机器学习预测建模项目必须通过统计学方法才能有效的进行。在本文中,我们将通过实例介绍一些在预测建模问题中起关键作用的统计学方法。...

[2017-08-28]  模拟退火(Simulated Annealing,简称SA)是一种通用概率算法,用来在一个大的搜寻空间内找寻命题的最优解。1、固体退火原理:将固体加温 ...

Machine Learning-感知器分类算法详解

[2018-05-31]  今天我们来讲解的内容是感知器分类算法,本文的结构如下:什么是感知器分类算法,在Python中实现感知器学习算法,在iris(鸢尾花)数据集上训练一个感知器模型,自适应线性神......