【本文由爱吧机器人网原创编译,转载请注明来源】
人工智能所犯的错误通常需要相当长的时间才能解决,如今在莱斯特大学新研究的帮助下,这些错误可以立即得到纠正。
莱斯特大学数学系的研究人员在《Neural Networks》杂志上发表了一篇文章,概述了新算法的数学基础,可以使人工智能收集错误报告并立即纠正,而不影响现有技能 ,同时还会积累这些纠正经验用于将来的版本或升级。
这本质上可以使机器人能够瞬间纠正错误,有效地从错误中“学习”,而不会损害已经获得的知识,并最终将新知识扩展到机器人彼此之间。
这些算法与ARM的工业合作伙伴一起被组合成一个系统,一个AI校正器,能够即时提升传统AI的性能。
ARM是世界上最大的半导体IP提供商,是目前90%以上智能电子产品的首选架构。
莱斯特大学数学系的Alexander Gorban教授说:“迄今为止,已经部署了多种版本的人工智能大数据分析系统,用于各种平台上的数百万台计算机和小工具,它们在不均匀的网络中进行交互。”
“亚马逊,IBM,Google,Facebook,SoftBank,ARM等许多工业技术巨头都参与到这些系统的开发中,其性能有所提高,但有时会产生错误的警报,错误的检测或错误的预测。错误是不可避免的,因为大数据的固有不确定性。”
“人类可以立即从错误中学习并不再重犯(至少优秀的人是这样)似乎是非常自然的,如何让人工智能也具备这种能力是一个很大的问题。”
“很难纠正一个在全速运行中的大型AI系统,比叫停一匹全速驰骋中的马更难。”
“我们最近发现这个问题的解决方案是可能的,在这项工作中,我们证明,在高维度甚至指数级的大样本中,经典Fisher形式的线性分类器足够强大,可以将错误与正确的响应以高概率分离并为非破坏性校正问题提供有效的解决方案。”
在廉价、快速和局部的修正程序中,迫切需要在校正过程中不会损害AI系统的重要技术。
机器学习的迭代方式对于
大数据和巨大的AI系统来说从来都是不便宜的,因此研究人员建议校正器应该与重新配置和合并局部校正所需的可逆校正器是非迭代的。
莱斯特大学数学系的Ivan Tyukin博士说:“由于以下几个原因,重新训练系统往往是不可行的:首先整个系统是巨大的,重新训练需要大量的计算资源或者很长时间或者两者兼而有之;其次在发生错误的时候,在错误产生位置进行局部重新训练似乎是不可能的;再者,我们修复一个地方可能会不得不破坏另一个地方,这样就导致系统重要的技能可能会消失。”
“大数据挖掘的可持续大型智能系统的开发,需要创造快速非破坏性、非迭代和可逆校正的技术和方法,但直到现在都不存在这样的技术。”
研究人员发现并证明了随机分离定理,为大型智能数据分析系统的校正提供了工具。
通过这种方法,
人工智能中的即时学习是可能的,为AI提供在发生错误之后从错误中重新学习的能力。
该项研究受到Innovate UK通过KTP基金的部分支持:ARM / Apical有限公司与莱斯特大学之间的KTP009890项目,Visual Management Systems Limited有限公司与莱斯特大学的KTP010522项目。知识转移伙伴关系(KTP)计划帮助企业创新和发展,它通过将企业与大学和毕业生联系起来来处理具体的项目。
来自ARM的R&D, Computer Vision, Imaging and Vision Group研发总监Ilya Romanenko博士表示:“拥有这样一个系统对于向客户和最终用户大规模部署AI服务是不可或缺的,客户特定的使用AI功能的设备引起客户特定的错误,这对最终用户来说是不可接受的。重新训练核心人工智能以处理这些错误在技术上是具有挑战性的,并且具有潜在风险。被训练处理特定错误的AI在新的情境下可能会出现意想不到的行为,随着人工智能部署规模的增长,问题的规模呈指数级增长,继续采取这种问题处理方式几乎不现实。
新技术能够完全消除这些障碍,使AI启动的设备在错误删除过程中协同工作,这种新的质量使大型AI启用的部署随着其大小的增长而变得更加智能化,实际上意味着无故障的AI设备成为现实。最近我们提出了专利申请,以确保我们在这方面的优先地位。”