爱吧机器人网 » 技术 > 机器学习 > 正文

机器学习:人工神经网络ANN

神经网络是从生物领域自然的鬼斧神工中学习智慧的一种应用。人工神经网络(ANN)的发展经历的了几次高潮低谷,如今,随着数据爆发、硬件计算能力暴增、深度学习算法的优化,我们迎来了又一次的ANN雄起时代,以深度学习为首的人工神经网络,又一次走入人们的视野。

感知机模型perception

不再处理离散情况,而是连续的数值,学习时权值在变化,从而记忆存储学到的知识

神经元输入:类似于线性回归z =w1x1+w2x2 +⋯ +wnxn= wT・x(linear threshold unit (LTU))
神经元输出:激活函数,类似于二值分类,模拟了生物学中神经元只有激发和抑制两种状态。

神经元输出
 

增加篇值,输出层哪个节点权重大,输出哪一个。

神经元输出
 

采用Hebb准则,下一个权重调整方法参考当前权重和训练效果

Hebb准则
 

#一个感知机的例子

import numpy as np

from sklearn.datasets import load_iris

from sklearn.linear_model import Perceptron

iris = load_iris()

X = iris.data[:, (2, 3)] # petal length, petal width

y = (iris.target == 0).astype(np.int) # Iris Setosa?

per_clf = Perceptron(random_state=42)

per_clf.fit(X, y)

y_pred = per_clf.predict([[2, 0.5]]

之后有人提出,perception无法处理异或问题,但是,使用多层感知机(MLP)可以处理这个问题

def heaviside(z):

return (z >= 0).astype(z.dtype)

def sigmoid(z):

return 1/(1+np.exp(-z))

#做了多层activation,手工配置权重

def mlp_xor(x1, x2, activation=heaviside):

return activation(-activation(x1 + x2 - 1.5) + activation(x1 + x2 - 0.5) - 0.5)

如图所示,两层MLP,包含输入层,隐层,输出层。所谓的深度神经网络,就是隐层数量多一些。

深度神经网络
 
深度神经网络
 
深度神经网络
 

激活函数

以下是几个激活函数的例子,其微分如右图所示

激活函数
 
激活函数
 

step是最早提出的一种激活函数,但是它在除0外所有点的微分都是0,没有办法计算梯度

logit和双曲正切函数tanh梯度消失,数据量很大时,梯度无限趋近于0,

relu在层次很深时梯度也不为0,无限传导下去。

如何自动化学习计算权重——backpropagation

首先正向做一个计算,根据当前输出做一个error计算,作为指导信号反向调整前一层输出权重使其落入一个合理区间,反复这样调整到第一层,每轮调整都有一个学习率,调整结束后,网络越来越合理。

step函数换成逻辑回归函数σ(z) = 1 / (1 + exp(–z)),无论x落在哪个区域,最后都有一个非0的梯度可以使用,落在(0,1)区间。

双曲正切函数The hyperbolic tangent function tanh (z) = 2σ(2z) – 1,在(-1,1)的区间。

The ReLU function ReLU (z) = max (0, z),层次很深时不会越传递越小。

多分类时,使用softmax(logistics激活函数)最为常见。

使用MLP多分类输出层为softmax,隐层倾向于使用ReLU,因为向前传递时不会有数值越来越小得不到训练的情况产生。

以mnist数据集为例

import tensorflow as tf

# construction phase

n_inputs = 28*28 # MNIST

# 隐藏层节点数目

n_hidden1 = 300

n_hidden2 = 100

n_outputs = 10

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")

y = tf.placeholder(tf.int64, shape=(None), name="y")

def neuron_layer(X, n_neurons, name, activation=None):

with tf.name_scope(name):

n_inputs = int(X.get_shape()[1])

# 标准差初始设定,研究证明设为以下结果训练更快

stddev = 2 / np.sqrt(n_inputs)

# 使用截断的正态分布,过滤掉极端的数据,做了一个初始权重矩阵,是input和neurons的全连接矩阵

init = tf.truncated_normal((n_inputs, n_neurons), stddev=stddev)

W = tf.Variable(init, name="weights")

# biases项初始化为0

b = tf.Variable(tf.zeros([n_neurons]), name="biases")

# 该层输出

z = tf.matmul(X, W) + b

# 根据activation选择激活函数

if activation=="relu":

return tf.nn.relu(z)

else:

return z

with tf.name_scope("dnn"):

# 算上输入层一共4层的dnn结构

hidden1 = neuron_layer(X, n_hidden1, "hidden1", activation="relu")

hidden2 = neuron_layer(hidden1, n_hidden2, "hidden2", activation="relu")

# 直接输出最后结果值

logits = neuron_layer(hidden2, n_outputs, "outputs")

# 使用TensorFlow自带函数实现,最新修改成dense函数

from tensorflow.contrib.layers import fully_connected

with tf.name_scope("dnn"):

hidden1 = fully_connected(X, n_hidden1, scope="hidden1")

hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")

logits = fully_connected(hidden2, n_outputs, scope="outputs", activation_fn=None)

# 使用logits(网络输出)计算交叉熵,取均值为误差

with tf.name_scope("loss"):

xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)

loss = tf.reduce_mean(xentropy, name="loss")

learning_rate = 0.01

with tf.name_scope("train"):

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

training_op = optimizer.minimize(loss)

with tf.name_scope("eval"):

correct = tf.nn.in_top_k(logits, y, 1)

accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

init = tf.global_variables_initializer()

saver = tf.train.Saver()

# Execution Phase

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("/tmp/data/")

# 外层大循环跑400次,每个循环中小循环数据量50

n_epochs = 400

batch_size = 50

with tf.Session() as sess:

init.run()

for epoch in range(n_epochs):

for iteration in range(mnist.train.num_examples // batch_size):

X_batch, y_batch = mnist.train.next_batch(batch_size)

sess.run(training_op, feed_dict={X: X_batch, y: y_batch})

acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})

acc_test = accuracy.eval(feed_dict={X: mnist.test.images,y: mnist.test.labels})

print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

# 下次再跑模型时不用再次训练了

save_path = saver.save(sess, "./my_model_final.ckpt")

# 下次调用

with tf.Session() as sess:

saver.restore(sess, "./my_model_final.ckpt") # or better, use save_path

X_new_scaled = mnist.test.images[:20]

Z = logits.eval(feed_dict={X: X_new_scaled})

y_pred = np.argmax(Z, axis=1)

超参数设置

隐层数量:一般来说单个隐层即可,对于复杂问题,由于深层模型可以实现浅层的指数级别的效果,且每层节点数不多,加至overfit就不要再加了。

每层神经元数量:以漏斗形逐层递减,输入层最多,逐渐features更少代表性更强。

激活函数选择(activation function):隐层多选择ReLU,输出层多选择softmax


上一篇:分布式机器人走进智能工厂 机器人学习迎来“春天”
下一篇:配备“一键重置”算法 机器人学习变得更方便
精选推荐
通过对抗性图像黑入大脑
通过对抗性图像黑入大脑

[2018-03-02]  在上面的图片中,左边是一张猫的照片。在右边,你能分辨出它是同一只猫的图片,还是一张看起来相似的狗的图片?这两张图片之间的区别在于, ...

麻省理工学院最新研究:优化软体机器人的控制和设计
麻省理工学院最新研究:优化软体机器人的控制和设计

[2019-11-24]  软体机器人属于一个新的领域,它可能在诸如外科手术等领域发挥重要作用(手术时的纳米机器人需要在人体内部移动而不损伤软组织)。软体机器 ...

苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展
苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展

[2017-12-11]  苹果隐秘的自动驾驶汽车项目多年来一直在转移焦点,但今年似乎正在加速。 4月份,公司获得了在加利福尼亚州进行自动驾驶汽车测试的许可证,而在6月份,苹果公司首席执行官库......

美国Natilus公司试飞水上无人货机 设计简单成本降低
美国Natilus公司试飞水上无人货机 设计简单成本降低

[2017-12-28]  Natilus创业公司成立于2014年,其梦想是建造大型无人机,以半价提供比船舶快得多国际货运。在十二月份,Natilus计划在旧金山湾测试一个9米翼展的小型原型无人机的水上滑行能力......

亚马逊计划建一个4000万美元的机器人中心
亚马逊计划建一个4000万美元的机器人中心

[2019-11-07]  爱吧机器人网消息,亚马逊11月6日宣布了一项计划,计划在美国马萨诸塞州韦斯特伯勒建立一个4000万美元、35万平方英尺的机器人创新中心。新 ...

亚马逊CEO杰夫·贝佐斯操控巨型有人驾驶机器人(巨型机甲)
亚马逊CEO杰夫·贝佐斯操控巨型有人驾驶机器人(巨型机甲)

[2017-03-21]  近日,亚马逊CEO杰夫·贝佐斯实现了每一个6岁儿童都会有的梦想,他控制了一个巨大的机甲机器人。据国外媒体Verge报道,前天(3月19日),贝 ...

[2017-03-21]  虽然有很多关于机器人取代工人的担心,但哈佛经济学家James Bessen的论文指出,在过去的67年里机器人仅仅淘汰掉人类工作中的一个。在1950 ...

基于生物启发的机器人很容易适应丢失附属器官
基于生物启发的机器人很容易适应丢失附属器官

[2017-12-17]  很多机器人被设计应用在危险环境,如灾难现场。在这些地方,他们的运动系统完全有可能被损坏。那这样会吓跑这些机器人吗?也许不是,如果它们像日本的东北和北海道大学创造的......

本周栏目热点

盘点全球十大最具影响力的机器人摇篮

[1970-01-01]    人工智能(AI)研究现正迅速发展,如无人驾驶汽车、计算机在《危险边缘》智力竞赛节目中获胜、数字私人助手Siri、GoogleNow和语音助手C ...

深度学习反向传播算法(BP)原理推导及代码实现

[2017-12-19]  分析了手写字数据集分类的原理,利用神经网络模型,编写了SGD算法的代码,分多个epochs,每个 epoch 又对 mini_batch 样本做多次迭代计算。这其中,非常重要的一个步骤,......

如何在机器学习项目中使用统计方法的示例

[2018-07-23]  事实上,机器学习预测建模项目必须通过统计学方法才能有效的进行。在本文中,我们将通过实例介绍一些在预测建模问题中起关键作用的统计学方法。...

Machine Learning-感知器分类算法详解

[2018-05-31]  今天我们来讲解的内容是感知器分类算法,本文的结构如下:什么是感知器分类算法,在Python中实现感知器学习算法,在iris(鸢尾花)数据集上训练一个感知器模型,自适应线性神......

[2017-08-28]  模拟退火(Simulated Annealing,简称SA)是一种通用概率算法,用来在一个大的搜寻空间内找寻命题的最优解。1、固体退火原理:将固体加温 ...