爱吧机器人网 » 技术 > 机器学习 > 正文

【Science】CMU机器学习系主任:八个关键标准判别深度学习任务成功与否

导读:AlphaGo战胜人类、机器人写作、人脸识别……越来越多的人工智能设备正在进入人们的生活,并从事流水化的工作。有人认为未来人类的工作将被机器学习所取代,人们面临失业的危险。Erik Brynjolfsson和Tom Mitchell从技术与经济学角度,来分析上述结论是否能站住脚。

机器人让人类下岗

目前,机器学习在医疗、金融、安防等领域应用广泛,并替代了一些流程化低级劳动,因此有人认为未来人类的工作将被机器学习所取代,人们面临失业的危险。
 
近日,《Science》发表了麻省理工学院数字经济倡导行动主任Erik Brynjolfsson和卡内基梅隆大学计算机科学学院机器学习系主任Tom Mitchell的文章,他们从机器学习和经济学角度分析了人类会不会“被失业”的问题。
 
引言:机器学习改变的太多了
 
在过去的几十年里,数字计算机已经改变了几乎所有经济领域的工作,现在的我们正处于一个更大、更快速变革的开端,这一切归功于机器学习的最新进展,它有能力加快自动化的步伐。
 
对机器学习的进展至关重要的是改进算法的组合,包括深度神经网络和相当快的计算机硬件。例如,Facebook基于短语的机器翻译模型,每天有超过45亿的语言翻译。图像识别的算法在ImageNet上造成了越来越低的错误率,使其从2010年的超过30%下降到今天的不到3%。同样,自2016年7月以来,语音识别方面错误了从8.4%降低到4.9%。
 
然而,机器学习是一个“通用技术”,就像蒸汽机和电力一样,它将产生大量的创新和功能。但对于具体的劳动力的影响和因此产生的更广泛的经济问题而言,我们还没有深刻的认识。现实也并不像我们有时所宣称的那样,人们面对即将到来的“失业”问题。
 
尽管机器学习的进步能力让人印象深刻,但它并不适用于所有任务,并且在在决策能力上也比人类弱的多。
 
八个关键标准来判别深度学习在任务中成功与否
 
1、能够学习函数,将定义明确的输入映射到明确输出
 
其中包括分类(例如,根据癌症发生的可能性给狗狗的图片做标记或标记医疗记录)和预测(例如,分析贷款申请来预测未来违约的可能性)。尽管机器学习可能学会预测与给定输入X相关的Y值,但这是一种学习的统计相关性,也许机器学习不会理解因果关系。
 
2、存在或者能够创建含有输入-输出对的大数据
 
训练的例子越多,学习的准确度就越高。深度神经网络的显著特征之一是,它在许多领域的性能在一定数量的示例之后似乎并不具有渐近性。尤其重要的是,所有相关的输入特性都要在训练数据中获取。尽管原则上任何任意的函数都可以用深度神经网络表示,但是计算机很容易模仿和延续训练数据中存在的不需要的偏差,并忽略那些包含了它们不能观察到的变量的规则。通过对现有流程和客户交互进行监督,可以通过雇佣人员标记或创建全新的数据集,或者通过模拟相关的问题设置来创建数字数据。
 
3、能够提供明确反馈,具有明确的目标和指标的任务
 
当我们能够清晰地描述目标时,机器学习就能很好地工作,即使我们不能确定实现这些目标的最佳过程。尽管机器学习能模仿个体,但由于在获取个体的输入输出决策能力上的缺失,因此它可能不会形成最佳的全系统性能。因此,为性能定义了系统范围的度量标准,为深度学习系统提供了一个黄金标准。当训练数据按照这样的黄金标准进行标记时,深度学习尤其强大,从而定义了预期的目标。
 
4、摆脱对背景知识或常识的依赖,缩短甚至跳脱逻辑推理的长链
 
机器学习系统在学习数据中的经验关联方面非常强大,但是当任务需要依赖计算机未知的常识或背景知识的长推理链或复杂计划时,它的效率较低。 一般来说,机器学习在视频游戏中表现不错,这种游戏需要快速反应,并提供即时反馈,但在游戏中选择最佳动作取决于记忆先前事件的时间以及关于世界的未知背景知识 (例如,知道房间里新引入的物品可能在哪里找到)。 例外的是,围棋和象棋这样的游戏,因为这些非物理的游戏可以以非常精确的速度快速模拟,所以可以自动收集数百万个完全自我标记的训练样例。 但是,在大多数现实世界中,我们缺乏完美的模拟。
 
5、不需要详细解释决定是如何做出的
 
大型神经网络通过巧妙地调整数以亿计的数字权重来学习做出决定,这些数字权重互连了他们的人造神经元。 解释这种决定对人类的推理可能是困难的,因为深度神经网络通常不会使用与人类相同的中间抽象。 例如,虽然计算机可以诊断特定类型的癌症或肺炎,或者比专家医生更好,但与人类医生相比,他们解释为什么或如何提出诊断的能力较差。 
 
6、具有容错性,不需要最佳解决方案,或者证明是正确的解决方案
 
几乎所有的机器学习算法都是从统计和概率上推导出他们的解决方案。 因此,很难将其训练到100%的准确度。 即使是最好的语音,物体识别和临床诊断计算机系统也会犯错(就像最好的人类一样)。 因此,容忍学习系统的错误是制约采用的重要标准。
 
7、学会的现象或函数/功能不要随时间发生快速的变化
 
一般来说,只有当未来测试例子的分布类似于训练样例的分布时,机器学习算法才能很好地工作。 如果这些分布随着时间而改变,则通常需要再培训,因此成功取决于相对于新培训数据获取率的变化率(例如,电子邮件垃圾邮件过滤器做得很好, 部分原因是与垃圾邮件发生变化的速度相比,新电子邮件的获得率the rate of acquisition较高)。
 
8、没有专门的灵巧性,身体技能或移动性要求
 
在处理非结构化环境和任务中的物理操作时,机器人与人类相比仍然笨拙。 这不是机器学习的缺点,而是机器人的一般物理机械操纵器的现有技术的结果。
 
六个非技术影响因素
 
除了上述标准外,还有许多非技术因素会影响到机器学习对劳动力的影响。 具体而言,机器学习对劳动力需求和工资的总体影响可以写成六个不同经济因素的函数:
 
1、劳力替代
 
2、价格弹性
 
3、互补性
 
4、收入弹性
 
5、劳动力供给弹性
 
6、业务流程重新设计
 
(经济学内容在此不做详细叙述)
 
最后,任何关于机器学习够和不能做什么,以及如何影响经济的讨论,都应该首先认识到两个基本的考虑因素:1、我们仍非常远离通用人工智能,机器也不能做全方位的任务。2、尽管技术创新通常能够影响和改善整体生活水平,但技术进步导致工资不平等表明,机器学习带来的经济效应可能具有极大的破坏性,既造造就了赢家,又造就了输家。
 
这就要求决策者、商业领袖、技术人员和研究人员相当重视这些问题。
 
文章地址:
 
https://science.sciencemag.org/content/358/6370/1530
 
作者介绍:
 
Erik Brynjolfsson

Erik Brynjolfsson
 
麻省理工学院数字经济倡导行动(the MIT Initiative on the Digital Economy)主任,斯隆学院教授。
 
Tom Mitchell

Tom Mitchell
 
卡内基梅隆大学计算机科学学院机器学习系主任、教授,美国工程院院士,著有《机器学习》等。


上一篇:Python语言下的机器学习库
下一篇:深度学习之生成式对抗网络(GAN)入门指南
精选推荐
17世纪的莱布尼茨试图制造“思想机器”却被现实打脸
17世纪的莱布尼茨试图制造“思想机器”却被现实打脸

[2019-11-05]  莱布尼茨,德国哲学家、数学家、律师,历史上少见的通才1666年,德国博学家戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz)发 ...

机器人iCub作为嵌入式AI的标准机器人研究平台的重要性
机器人iCub作为嵌入式AI的标准机器人研究平台的重要性

[2017-12-24]  机器人的研究在过去10年中得益于一个具有嵌入式人工智能(AI)的标准化开源平台——人形机器人iCub。iCub最初在意大利被创建,如今在欧洲、美国、韩国、新加坡和日本的实验室......

这个外科手术机器人可以为患者“量身定制”
这个外科手术机器人可以为患者“量身定制”

[2019-07-12]  世界首创,来自澳大利亚机器人视觉研究中心的研究人员正在推动手术机器人的发展边界,他们创造了可定制的、小型化的手术机器人,能够唯一地 ...

MIT研制出可以像植物一样生长的机器人
MIT研制出可以像植物一样生长的机器人

[2019-11-09]  麻省理工学院开发了一种新型机器人,这种机器人可以本质上自我延伸,其生长方式与植物幼苗向上生长的方式惊人相似。值得注意的是,研究人员 ...

麻省理工又秀神技:推出如魔法般跳跃的方块机器人集群
麻省理工又秀神技:推出如魔法般跳跃的方块机器人集群

[2019-10-31]  几天前,小编向大家介绍过麻省理工(MIT)研发的一种自组装机器人集群(点此阅览),它们可以用统一标准的小单元自动组装出各种大型结构。 ...

研究人员融合人类与AI的创造力 显著提高了深度学习的表现
研究人员融合人类与AI的创造力 显著提高了深度学习的表现

[2019-10-12]  由加拿大人工智能领域研究主席、滑铁卢大学系统设计工程教授Alexander Wong领导的一个团队开发了一种新型紧凑型神经网络家族,可以在智能 ...

通过对抗性图像黑入大脑
通过对抗性图像黑入大脑

[2018-03-02]  在上面的图片中,左边是一张猫的照片。在右边,你能分辨出它是同一只猫的图片,还是一张看起来相似的狗的图片?这两张图片之间的区别在于, ...

美国人工智能公司Skymind进入福建全面开展业务
美国人工智能公司Skymind进入福建全面开展业务

[2017-12-11]  人工智能在当今这个时代对大家来说想必是非常熟悉的,这也是我国近十几年来一直追求的目标,未来的时间里这也将是全人类追求的目标。就目前来看,近年来,人工智能或在我国迎......

本周栏目热点

盘点全球十大最具影响力的机器人摇篮

[1970-01-01]    人工智能(AI)研究现正迅速发展,如无人驾驶汽车、计算机在《危险边缘》智力竞赛节目中获胜、数字私人助手Siri、GoogleNow和语音助手C ...

深度学习反向传播算法(BP)原理推导及代码实现

[2017-12-19]  分析了手写字数据集分类的原理,利用神经网络模型,编写了SGD算法的代码,分多个epochs,每个 epoch 又对 mini_batch 样本做多次迭代计算。这其中,非常重要的一个步骤,......

如何在机器学习项目中使用统计方法的示例

[2018-07-23]  事实上,机器学习预测建模项目必须通过统计学方法才能有效的进行。在本文中,我们将通过实例介绍一些在预测建模问题中起关键作用的统计学方法。...

Machine Learning-感知器分类算法详解

[2018-05-31]  今天我们来讲解的内容是感知器分类算法,本文的结构如下:什么是感知器分类算法,在Python中实现感知器学习算法,在iris(鸢尾花)数据集上训练一个感知器模型,自适应线性神......

[2017-08-28]  模拟退火(Simulated Annealing,简称SA)是一种通用概率算法,用来在一个大的搜寻空间内找寻命题的最优解。1、固体退火原理:将固体加温 ...