爱吧机器人网 » 技术 > 机器学习 > 正文

2018年值得关注的10种机器学习工具

2017年是机器学习大放异彩的一年,这归功于众多公司广泛而深入地研究和开发更新颖、更高效的工具和框架。这里介绍,有望在2018年大行其道的10种机器学习的工具和框架。
 
\
 
1.亚马逊Sagemaker
 
AWS re:Invent 2017上宣布的一款重大产品就是正式发布的亚马逊Sagemaker,这种新的框架简化了构建机器学习模型并部署到云端的任务。
 
这项服务对于并不深入了解机器学习的开发人员来说非常有用,因为它为开发人员提供了一系列预先构建的开发环境,基于流行的Jupyter笔记本格式。如果数据科学家不希望花费大量时间,就可以在AWS上构建有效的机器学习系统,并对性能进行微调,就会发现这项服务大有用处。
 
相关链接:
 
https://datahub.packtpub.com/machine-learning/amazon-sagemaker-machine-learning-service/
 
2.DSSTNE
 
DSSTNE(通常名为Destiny)是亚马逊提供的另一款产品,这种开源库被用于开发机器学习模型。它的主要优势在于可以用来训练和部署处理稀疏输入的推荐模型。使用DSSTNE开发的模型经训练后可以使用多个GPU,具有可扩展性,并针对快速性能进行了优化。
 
该库在GitHub上有近4000颗星,它是2018年值得关注的另一款工具!
 
相关链接:https://github.com/amzn/amazon-dsstne
 
3.Azure机器学习工作台
 
早在2014年,微软就发布了Azure机器学习工具,将机器学习和人工智能功能放到云端。不过这严格来说是一种纯云服务。在今年9月召开的Ignite 2017大会上,微软宣布了下一代Azure端机器学习工具,通过Azure机器学习工作台,为众多企业组织带来机器学习功能。
 
Azure机器学习工具台是一个跨平台客户软件,它在Windows机器和苹果机器上都可以运行。它是为想要执行数据操纵和处理任务的数据科学家和机器学习开发人员量身打造的。它为确保可扩展性而构建,用户可以从一系列广泛的数据源获得直观的洞察力,并用于数据建模任务。
 
相关链接:https://azure.microsoft.com/en-in/services/machine-learning-services/
 
4.Neon
 
早在2016年,英特尔宣布斥资3.5亿美元收购Nervana,打算成为人工智能市场的大玩家。Nervana是一家人工智能初创公司,一直在为机器学习开发软硬件。有了Neon,他们现在拥有一个快速、高性能的深度学习框架,专门为了在最近宣布的Nervana神经网络处理器上运行而设计。
 
Neon在设计当初力求易于使用,并支持与iPython笔记本集成,它支持常见的深度学习模型,比如CNN、RNN、LSTM及其他模型。该框架显示出日臻完善的迹象,在GitHub上有3000多颗星。Neon势必会在未来几年挑战几大深度学习库。
 
相关链接:https://github.com/NervanaSystems/neon
 
5.微软DMLT
 
企业在机器学习方面面临的主要挑战之一是,需要迅速扩展模型,在尽量减少资源使用的同时,又不牺牲性能。微软的分布式机器学习框架(DMLT)旨在做到这一点。DMLT由微软开放源代码,那样它可以从社区获得更广泛的支持。它让机器学习开发人员和数据科学家拿来单机器算法后可以扩大其规模,进而构建高性能分布式模型。
 
DMLT主要专注于分布式机器学习算法,让你可以轻松地执行诸如字嵌入、采样和梯度提升之类的任务。该框架目前还不支持对深度学习模型进行训练,不过我们预计这项功能很快就会被添加到该框架中。
 
相关链接:https://www.dmtk.io/
 
6.谷歌云机器学习引擎
 
云机器学习引擎被认为是谷歌主要的机器学习产品,它让你可以比较轻松地针对各种各样的数据来构建机器学习模型。该平台充分利用流行的Tensorflow机器学习框架,可用于执行大规模预测分析。它还让你可以使用流行的HyperTune功能,对机器学习模型的性能进行微调和优化。
 
由于无服务器架构支持自动监控、配置和扩展,机器学习引擎确保你只需要为想要训练哪种机器学习模型而操心。这项功能尤其适用于期望外出时可以构建大规模模型的机器学习开发人员。
 
相关链接:https://cloud.google.com/ml-engine/
 
7.苹果Core ML
 
Core ML框架由苹果开发,旨在帮助iOS开发人员构建更智能的应用程序,它是让Siri更智能的秘诀。它充分利用CPU的功能和GPU的功能,让开发人员得以构建不同类型的机器学习和深度学习模型,然后这些模型可以无缝集成到iOS应用程序中。Core ML支持所有常用的机器学习算法,比如决策树、支持向量机和线性模型等等。
 
Core ML的功能针对实际环境的诸多使用场合,比如自然语言处理和计算机视觉等,因而外出时可以在苹果设备上分析数据,无需导入到模型来学习。
 
相关链接:https://developer.apple.com/machine-learning/
 
8.苹果Turi Create
 
在许多情况下,iOS开发人员想要定制希望集成到所开发的应用程序中的机器学习模型。为此,苹果推出了Turi Create。该库让你得以专注于手头的任务,而不是决定使用哪种算法。那样就可以在数据集、模型需要运行的规模以及需要将模型部署到哪个平台方面做到很灵活。
 
Turi Create用起来很方便,可用于为推荐、图像处理、文本分类及众多任务构建自定义模型。你只需要对Python有所了解,即可上手!
 
相关链接:https://github.com/apple/turicreate
 
9.Convnetjs
 
深度学习不仅仅出现在超级计算机和机器集群上,现在它还切实出现在你的互联网浏览器上!现在你使用流行的基于Javascript的Convnetjs库,就可以直接在浏览器上训练先进的机器学习和深度学习模型,不需要CPU或GPU。
 
该库最初由特斯拉公司的现任人工智能主管安德烈?卡帕锡(Andrej Karpathy)编写,此后被开源,在社区的积极贡献下有所扩展。你可以直接在浏览器上轻松训练深度神经网络,甚至训练强化学习模型,这有赖于这个非常独特而有用的库提供支持。这个库适合不想购买专业硬件来训练计算密集型模型的那些人。Convnetjs在GitHub上有近9000颗星,它俨然是2017年的明星项目之一,迅速成为深度学习方面的首选库。
 
相关链接:https://cs.stanford.edu/people/karpathy/convnetjs/
 
10.BigML
 
BigML是一家知名的机器学习公司,为开发机器学习模型提供了一个易于使用的平台。使用BigML的REST API,你可以在其平台上顺畅无阻地训练机器学习模型。它让你可以执行不同的任务,比如异常检测和时间序列预测,还可以构建执行实时预测分析的应用程序。
 
借助BigML,你可以在本地或在云端部署模型,可以灵活地选择运行机器学习模型所需要的那种环境。BigML恪守承诺,力求“使机器学习对每个人而言都异常简单”。
 
由于微软、亚马逊和谷歌都竞相成为人工智能领域的霸主,2018年可能会是人工智能领域发展迎来突破的一年。除此之外还有旨在为用户简化机器学习的各种开源库,还有一大堆的工具和框架需要密切关注。令人兴奋的是,它们都有能力成为下一个TensorFlow,带来下一场AI颠覆。
 
相关链接:https://bigml.com/


上一篇:40道题检测你的机器学习掌握程度
下一篇:图灵奖得主Judea Pearl:机器学习无法成为强AI基础,突破口在“因果革命”
精选推荐
MIT用深度学习处理3D点云数据 应用于无人汽车等领域
MIT用深度学习处理3D点云数据 应用于无人汽车等领域

[2019-10-23]  如果你见过自动驾驶汽车,也许会对车顶上那个一直在旋转的圆柱体感到好奇。这是一个雷达传感器,无人驾驶汽车依靠它在现实世界中进行导航。 ...

美国普渡大学研发快动作软体机器人,灵感来自变色龙舌头捕食
美国普渡大学研发快动作软体机器人,灵感来自变色龙舌头捕食

[2019-10-31]  本文图片均来自:Ramses v Martinez 普渡大学变色龙、蝾螈和许多蟾蜍利用积蓄的弹性能量,向距离1 5倍体长的毫无防备的昆虫伸出粘糊糊的舌 ...

MIT最新“人机”互连系统 让双腿机器人复制人体技能
MIT最新“人机”互连系统 让双腿机器人复制人体技能

[2019-11-01]  MIT的小爱马仕想借用你的大脑 ,图片来自: João Ramos爱吧机器人网消息,麻省理工学院(MIT)的研究人员展示了一种新型遥操作系 ...

7种常见的机器人焊接类型
7种常见的机器人焊接类型

[2017-12-17]  机器人焊接是工业领域最常见的机器人应用之一,近几十年来主要由汽车行业驱动。机器人焊接在完成大批量,重复性的焊接任务时效率最高。...

谷歌大脑发布ROBEL基准 鼓励用低成本机器人训练AI系统
谷歌大脑发布ROBEL基准 鼓励用低成本机器人训练AI系统

[2019-10-11]  训练AI系统的机器人D& 39;Claw和D& 39;Kitty用于控制机器人的人工智能系统,测量其性能所使用的基准通常仅限于为工业环境设计的昂贵硬件, ...

2018年企业数字化转型的五大趋势
2018年企业数字化转型的五大趋势

[2017-12-16]  据2016年哈佛商学院研究表明,选择进行数字化转型的企业在3年内表现出了55%的平均毛利润提升,相比之下其他企业毛利润同期降低了37%。数字化转型企业的领头羊,也曾是收入处于......

这个外科手术机器人可以为患者“量身定制”
这个外科手术机器人可以为患者“量身定制”

[2019-07-12]  世界首创,来自澳大利亚机器人视觉研究中心的研究人员正在推动手术机器人的发展边界,他们创造了可定制的、小型化的手术机器人,能够唯一地 ...

全自动膝关节置换手术机器人被美国FDA批准上市
全自动膝关节置换手术机器人被美国FDA批准上市

[2019-10-14]  美国Think Surgical公司已获得美国食品和药物管理局(FDA)的批准,在美国销售用于全膝关节置换(TKA)的TSolution One®全膝关节应用 ...

本周栏目热点

盘点全球十大最具影响力的机器人摇篮

[1970-01-01]    人工智能(AI)研究现正迅速发展,如无人驾驶汽车、计算机在《危险边缘》智力竞赛节目中获胜、数字私人助手Siri、GoogleNow和语音助手C ...

深度学习反向传播算法(BP)原理推导及代码实现

[2017-12-19]  分析了手写字数据集分类的原理,利用神经网络模型,编写了SGD算法的代码,分多个epochs,每个 epoch 又对 mini_batch 样本做多次迭代计算。这其中,非常重要的一个步骤,......

如何在机器学习项目中使用统计方法的示例

[2018-07-23]  事实上,机器学习预测建模项目必须通过统计学方法才能有效的进行。在本文中,我们将通过实例介绍一些在预测建模问题中起关键作用的统计学方法。...

Machine Learning-感知器分类算法详解

[2018-05-31]  今天我们来讲解的内容是感知器分类算法,本文的结构如下:什么是感知器分类算法,在Python中实现感知器学习算法,在iris(鸢尾花)数据集上训练一个感知器模型,自适应线性神......

[2017-08-28]  模拟退火(Simulated Annealing,简称SA)是一种通用概率算法,用来在一个大的搜寻空间内找寻命题的最优解。1、固体退火原理:将固体加温 ...