爱吧机器人网 » 技术 > 人工智能 > 正文

开启NLP新时代的BERT模型,是怎么一步步封神的?

NLP领域的伸手党们,上个月简直像在过年!

不仅号称谷歌最强NLP模型的BERT如约开源了,而且最新版本还支持中文,可以用于中文命名实体识别的Tensorflow代码!最关键的是,这个强大的模型还横扫11项记录,"阅读理解超过人类"。

谷歌团队的Thang Luong更直接宣告:BERT模型开启了NLP的新时代。“BERT在手,天下我有”的既视感啊!

人工智能漫长的发展史上,能够让行业“锣鼓喧天,鞭炮齐鸣”的算法模型还真不多见。不过,在跟风成为这个模型的舔狗之前,我们先来扒下它的外衣,看看到底有没有那么神奇。



什么是BERT模型?

这个让全球开发者们为之欢欣鼓舞的新模型,全称是Bidirectional Encoder Representation from Transformers,即对Transformer的双向编码进行调整后的算法。

这种预训练模型所针对的核心问题,就是NLP的效率难题。

众所周知,智能语音交互要理解上下文、实现通顺的交流、准确识别对象的语气等等,往往需要一个准确的NLP模型来进行预测。

但越是精准的模型,越是依赖于海量的训练语料,往往需要人工来进行标注和制作,因此,通过某种模型来预训练一个语言模型,帮助进行超大规模的表征学习,就成了一种靠谱且被广泛采用的方法。

而传统采用的预训练模型,比如AI2的 ELMo,以及OpenAI的fine-tune transformer,也同样需要通过人力标注来制作训练数据。

譬如说常用的中文汉字有3500个,词汇数量50万,制作中文语言预训练模型的参数数量自然也就十分庞大,中文的预训练模型需要对每个都进行人工标注,这就又陷入了“有多人工就有多少智能”的死胡同。

那么,呱呱落地的BERT为什么能解决这一问题呢?它的优势主要体现在三个方面:

1. BERT拥有一个深而窄的神经网络。transformer的中间层有2018,BERT只有1024,但却有12层。因此,它可以在无需大幅架构修改的前提下进行双向训练。由于是无监督学习,因此不需要人工干预和标注,让低成本地训练超大规模语料成为可能。



2. BERT模型能够联合神经网络所有层中的上下文来进行训练。这样训练出来的模型在处理问答或语言推理任务时,能够结合上下文理解语义,并且实现更精准的文本预测生成。

3. BERT只需要微调就可以适应很多类型的NLP任务,这使其应用场景扩大,并且降低了企业的训练成本。BERT支持包括中文在内的60种语言,研究人员也不需要从头开始训练自己的模型,只需要利用BERT针对特定任务进行修改,在单个云TPU上运行几小时甚至几十分钟,就能获得不错的分数。

用一些开发者的话来说,就是BERT的“效果好到不敢相信”,这也是其快速蹿红的核心原因。

BERT是如何工作的?

这样厉害的模型,是怎样被训练出来的呢?主要分为五个步骤:

首先,将语料中的某一部分词汇遮盖住,让模型根据上下文双向预测被遮盖的词,来初步训练出通用模型。

然后,从语料中挑选出连续的上下文语句,让transformer模型来识别这些语句是否连续。

这两步合在一起完成预训练,就成为一个能够实现上下文全向预测出的语言表征模型。

最后,再结合精加工(fine tuning)模型,使之适用于具体应用。



而BERT应用起来也非常简单,具体到什么程度呢?个人开发者可以在任意文本语料库上完成“预测下一句”之类的任务。

只需要进行数据生成,把整个输入文件的纯文本做成脚本保存到内存,就可以用BERT进行预训练了。

通过一段简单代码,预训练20步左右,就能得到一个基础的NLP任务模型。如果想在实际应用中有更好的表现,训练10000步以上也不会花费很长时间。



从上述实验成果来看,似乎可以直接得出结论:BERT开启了一个NLP的新世界!

以前我们总是吐槽机器翻译、自然语言理解等NLP技术都是“实验室的人工智能,生活中的“人工智障”,而且每个厂商的语音产品似乎都停留在用论文和跑分隔空叫板,实际应用场景上体验感其实差异并不明显。但BERT的出现,不仅让机器语言理解上有了更好的效果,尤其是上下文理解和文本生成上,表现十分惊艳。更重要的是,它为自然语言处理技术带来的新想象空间。

封神之前,BERT还要面对哪些问题?

说到这里,是不是已经有种“有条件要上BERT,没有条件创造条件也要上BERT”的感觉了?

别急,BERT模型看起来很美好,但并不是一枚谁拿来都能快速见效的“救心丸”,至少有三点需要额外注意:

一是开销巨大,在GPU上跑一次成本很高,而Google推荐的云TPU价格虽然低廉(500美元),却需要两周时间。

二是数据规模要求高。如果没有足够庞大的训练语料,很难在针对性开发中复现同样的评测效果。

三是BERT无法单独完成计算问题,需要后续任务补全推理和决策环节。而且BERT本身是无监督学习,因此不能直接用于解决NLP问题,往往需要结合现有的有监督学习以避免算法歧视或偏见。

目前看来,BERT的魅力虽然让开发者和企业们难以抗拒,但也存在着诸多门槛,想要见效并不是一朝一夕的事儿。但它能够被人吹爆,并不仅仅只是因为算法和数据上的突破,真正的价值还是隐藏在对产业端的推动力量。

BERT带来的想象空间

众所周知,自然语言处理技术被称为AI领域的明珠,但在产业端,智能语音企业对于自家技术的竞争力,不是宣传又在SQuAD这样的顶级赛事中跑了多少分,就是基于各自的数据集大吹特吹准确率。但是,彼此之间的数据往往都十分焦灼,很难真正拉开差距。

而BERT的出现,显然为智能语音技术公司的竞争带来了全新的关键要素,那就是效率,以及成本。

BERT的横空出世,抹平了训练语料的人工标注成本,让超大规模的模型训练不再遥不可及,从而使得产业端研发出交互更友好、理解力更高的语音交互产品成为了可能。

另一方面,在垂直应用端,多种语言支持和低成本地针对性训练,让BERT可以很快在垂直领域进行部署,大大提升了智能语音的配置效率和应用范围,为NLP的产业端实锤落地提供了长期发展的支撑力量。

解决了模型和应用的问题,NLP领域的新赛道自然就落在了语料和算力上。

想要借助BERT训练出更精准、更好的应用模型,考验着企业的两方面能力:一个是训练语料的规模;一个是强大算力的支撑。

BERT使用了超大的数据集(BooksCorpus 800M + English Wikipedia 2.5G单词)和超大的算力(对应于超大模型)来在相关的任务上做预训练。未来,是否有足够的训练语料来复现同样的效果,又是否足够的GPU(背后就是钱)来支撑跑BERT,将是智能语音技术企业拉开身位的关键。



总而言之,BERT在NLP界还是个新生事物,但已经有了封神的潜质。比此前的解决方案更优秀,更有发展潜力。

不过,对数据规模和算力的要求,以及与自身业务的耦合,也在无形中提升着智能语音的门槛和成本。

从这个角度看,最终能够借助BERT拉开竞争区位的,要么是搜狗、阿里、百度这样以搜索、电商为主业的大数据“富一代”,要么是凭借强大效率与业务创新实现“弯道超车”的新独角兽,接下来恐怕可以激发不少新脑洞和解题思路。

无论如何,BERT的出现,终于让专注“跑分”和“隔空叫板”的NLP领域,多了一些更有趣的想象力。



上一篇:NLP的华山论剑,中国队暂时领先
下一篇:第四范式论文登国际顶级期刊 AI为攻破生物化学难题提供新思路
精选推荐
基于生物启发的机器人很容易适应丢失附属器官
基于生物启发的机器人很容易适应丢失附属器官

[2017-12-17]  很多机器人被设计应用在危险环境,如灾难现场。在这些地方,他们的运动系统完全有可能被损坏。那这样会吓跑这些机器人吗?也许不是,如果它们像日本的东北和北海道大学创造的......

这些人型机器人是如此真实,你的肉眼几乎无法区分
这些人型机器人是如此真实,你的肉眼几乎无法区分

[2017-09-03]   我们生活在一个区分现实与幻想变得越来越困难的世界。由于机器人技术的进步,创造人工的人类正在逐渐接近完美的最终目标。我们现在看到的机器人不再只是一块发光二极管,......

人工智能准确预测患者一年内的死亡风险,原理却无法解释
人工智能准确预测患者一年内的死亡风险,原理却无法解释

[2019-11-13]  图片来自BURGER PHANIE SCIENCE PHOTO LIBRARY美国最新研究显示,人工智能通过查看心脏测试结果,以高达85%以上的准确率预测了一个人在一 ...

美国Natilus公司试飞水上无人货机 设计简单成本降低
美国Natilus公司试飞水上无人货机 设计简单成本降低

[2017-12-28]  Natilus创业公司成立于2014年,其梦想是建造大型无人机,以半价提供比船舶快得多国际货运。在十二月份,Natilus计划在旧金山湾测试一个9米翼展的小型原型无人机的水上滑行能力......

智能机器人困惑的时候知道该问什么问题
智能机器人困惑的时候知道该问什么问题

[2017-03-20]   照片:Nick Dentamaro 布朗大学 上周,我们提到了麻省理工学院的一些研究,即通过链接人的大脑来帮助机器人在他们将要犯错误的时 ...

麻省理工最新机器人“装配工”未来可建造太空基地
麻省理工最新机器人“装配工”未来可建造太空基地

[2019-10-17]  两个机器人原型把一系列小单元组装成大结构体麻省理工学院科研人员最近提出一种新型机器人技术,即一种小型机器人系统,能够自主地用统一规 ...

[2017-03-21]  虽然有很多关于机器人取代工人的担心,但哈佛经济学家James Bessen的论文指出,在过去的67年里机器人仅仅淘汰掉人类工作中的一个。在1950 ...

麻省理工又秀神技:推出如魔法般跳跃的方块机器人集群
麻省理工又秀神技:推出如魔法般跳跃的方块机器人集群

[2019-10-31]  几天前,小编向大家介绍过麻省理工(MIT)研发的一种自组装机器人集群(点此阅览),它们可以用统一标准的小单元自动组装出各种大型结构。 ...

本周栏目热点

说一说那些进入日常生活的智能机器人

[1970-01-01]    从《星球大战》里的机器人英雄,到前些年大受欢迎的电影《我,机器人》,无数的科幻作品里都少不了机器人元素,人们将之视为 未来感的 ...

奇点大学:人工智能与“奇点理论”

[1970-01-01]    就在前几天和行业内的几个朋友吃饭时,内容在不经意间又转向了那个老生常谈的话题-到底什么是在智能电视上最好的交互方式上,于是乎五 ...

说客小π情感机器人体验【评测】

[2015-12-29]     前言  随着语音识别技术的发展,声控灯、语音输入法、语音交互等各具特色 ...

Facebook人工智能机器人生成照片以假乱真

[1970-01-01]    无论你是否认为面部识别令人毛骨悚然,很明显全球多家科技公司正在继续投资开发更强大的图像智能技术。  无论是微软的猜年龄机器人, ...

麻省理工智能机器人最新技术 机器手指研究获得突破

[2015-12-27]     麻省理工智能机器人最新消息,今年在研究机器手方面跨出了一大步,现在它又 ...