爱吧机器人网 » 技术 > 人工智能 > 正文

ACL 2019:使用元词改进自然语言生成

本文将对 ACL2019论文《Neural Response Generation with Meta-Words》进行解读,这篇论文提出的方法可以“显式”地表示输入和回复间的对应关系,从而使得对话生成的结果变得可解释,同时使生成模型可以允许开发者能够像“拼乐高玩具”一样通过控制一些属性定制对话生成的结果。 论文地址:https://arxiv.org/pdf/1906.06050.pdf

源码地址:源码及数据集尚未公开
论文作者:Can Xu, Wei Wu, Chongyang Tao, Huang Hu, Matt Schuerman, and Ying Wang


人机对话是NLP领域一个基础的问题,传统的研究关注于构建任务导向的对话系统来实现用户在特定领域的特定任务,如餐馆预定等。最近,构建开放域的聊天机器人获得了越来越多的关注,这不仅归功于大规模的人人对话数据的出现,还因为一些真实的对话产品(如微软小冰)的成功。

一个聊天机器人通常是通过encoder-decoder框架的响应生成模型实现的[1],但其通常存在的一个问题就是容易产生平凡回复(safe response),如“I don’t know”和“me too”等。一般来讲,平凡回复的产生来源于开放域对话中存在的输入和回复间的 “一对多”关系,而传统的Seq2seq结构倾向于记住数据中出现频率高的词汇。

本文提出的模型可以对开放域对话中的一对多关系进行可解释性和可控制的建模。与隐变量方法不同的是,本文使用元词(meta-word)来明确地表示消息与响应之间的关系。给定一条消息,我们可以通过控制元词来控制生成的响应。


使用元词辅助响应生成有以下几个优点:1.使生成模型具有可解释性,用户可以在生成响应前就知道生成的响应类型;2.生成的过程是可以控制的,元词的接口允许用户定制响应;3.生成的方法是可泛用的,可以将行为、人物角色、情感等特征作为元词的属性与一些已有的工作进行结合;4. 基于生成的开放域对话系统现在变得可扩展,因为该模型支持元词的特征工程。

1. 论文模型


利用meta-word进行响应生成需要解决两个问题:1.如何确保回复和输入相关;2.如何确保回复能够如实地表达预先定义的元词。为了解决这两个问题,本文提出了一个目标跟踪记忆增强序列-序列模型,模型由编码-解码结构的状态记忆板和目标跟踪记忆网络的状态控制器组成。

在生成响应前,编码器通过一个双向GRU将输入信息表示为一个序列,目标跟踪记忆网络由元词初始化得到。然后在响应解码时,状态记忆板跟踪元词的表达并由状态控制器更新。状态控制器从状态记忆板读出元词表达的状态,并通过通知解码器元词表达的状态和目标之间的差异来管理每个步骤的解码过程。基于消息表示,状态控制器提供的信息和生成的字序列,解码器可以对响应的下一个字进行预测。在模型学习过程中,本文在传统的似然目标之外增加了一个状态更新损失,以使得目标追踪能够更好地利用训练数据中的监督信号。

不仅如此,本文还提出了一个元词预测方案,从而使得整个架构可以在实际中使用。

2. 论文实验

本文以MMI-bidi、SC-Seq2Seq、kg-CVAE、CT等多个Seq2Seq模型作为基线,在Twitter和Reddit两个大规模数据集上考察了GTMNES2S生成回复的相关性、多样性、“一对多“关系建模的准确性、以及元词表达的准确性。




更有意思的是,如果逐渐增加元词中的属性变量,验证集上的PPL会逐渐降低,这也印证了“通过调整元词可以不断提升模型性能”的论断。


下图的两个例子也表明,通过本模型生成的响应具有更多的信息以及更好的连贯性。


3. 结论

本文提出了一个目标跟踪记忆增强的序列到序列模型,用于使用元词明确定义响应的特征进行开放域的响应生成。两个数据集的评估结果表明,本文的模型在响应质量和元词表达的准确性方面明显优于几个最先进的生成架构。

参考文献

[1] Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron C Courville, and Yoshua Bengio. 2017. A hierarchical latent variable encoder-decoder model for generating dialogues. In AAAI, pages 3295-3301.




上一篇:周鸿祎谈人工智能:在网络攻防中只能作为辅助
下一篇:AI数据存储设备选型的6个关键要素
精选推荐
机器人灵巧手将成为智能机器人的下一个重大突破
机器人灵巧手将成为智能机器人的下一个重大突破

[2018-01-25]  计算机科学教授兼东北地区助手机器人实验室负责人罗伯特·普拉特(Robert Platt)说:“机器人手操作是下一步要解决的问题。想象一下,一个机器人可以在现实世界中用手去做事......

英伟达用联合学习创建医学影像AI 可共享数据和保护隐私
英伟达用联合学习创建医学影像AI 可共享数据和保护隐私

[2019-10-14]  英伟达(Nvidia)和伦敦国王学院(King’s College London)的人工智能研究人员利用联合学习训练了一种用于脑肿瘤分类的神经网络, ...

谷歌《Nature》发论文称实现量子霸权 18亿倍速碾压世界最强超算
谷歌《Nature》发论文称实现量子霸权 18亿倍速碾压世界最强超算

[2019-10-23]  谷歌坚称自己已经取得了量子霸权——这标志着计算研究领域的一个重要里程碑。谷歌首次发布声明是在今年9月,虽然遭到竞争对手的质疑,但就 ...

美国人工智能公司Skymind进入福建全面开展业务
美国人工智能公司Skymind进入福建全面开展业务

[2017-12-11]  人工智能在当今这个时代对大家来说想必是非常熟悉的,这也是我国近十几年来一直追求的目标,未来的时间里这也将是全人类追求的目标。就目前来看,近年来,人工智能或在我国迎......

南加州大学机器人学家:机器人更适合粗暴的爱
南加州大学机器人学家:机器人更适合粗暴的爱

[2019-11-07]  图片来自JOHN MADERE GETTY IMAGES打是疼骂是爱,当人类粗暴的将物体从机器人手中敲掉,看似残忍,实际上却能帮助机器人找到最好的握持物 ...

人工智能准确预测患者一年内的死亡风险,原理却无法解释
人工智能准确预测患者一年内的死亡风险,原理却无法解释

[2019-11-13]  图片来自BURGER PHANIE SCIENCE PHOTO LIBRARY美国最新研究显示,人工智能通过查看心脏测试结果,以高达85%以上的准确率预测了一个人在一 ...

麻省理工最新机器人“装配工”未来可建造太空基地
麻省理工最新机器人“装配工”未来可建造太空基地

[2019-10-17]  两个机器人原型把一系列小单元组装成大结构体麻省理工学院科研人员最近提出一种新型机器人技术,即一种小型机器人系统,能够自主地用统一规 ...

研究人员融合人类与AI的创造力 显著提高了深度学习的表现
研究人员融合人类与AI的创造力 显著提高了深度学习的表现

[2019-10-12]  由加拿大人工智能领域研究主席、滑铁卢大学系统设计工程教授Alexander Wong领导的一个团队开发了一种新型紧凑型神经网络家族,可以在智能 ...

本周栏目热点

说一说那些进入日常生活的智能机器人

[1970-01-01]    从《星球大战》里的机器人英雄,到前些年大受欢迎的电影《我,机器人》,无数的科幻作品里都少不了机器人元素,人们将之视为 未来感的 ...

奇点大学:人工智能与“奇点理论”

[1970-01-01]    就在前几天和行业内的几个朋友吃饭时,内容在不经意间又转向了那个老生常谈的话题-到底什么是在智能电视上最好的交互方式上,于是乎五 ...

说客小π情感机器人体验【评测】

[2015-12-29]     前言  随着语音识别技术的发展,声控灯、语音输入法、语音交互等各具特色 ...

Facebook人工智能机器人生成照片以假乱真

[1970-01-01]    无论你是否认为面部识别令人毛骨悚然,很明显全球多家科技公司正在继续投资开发更强大的图像智能技术。  无论是微软的猜年龄机器人, ...

麻省理工智能机器人最新技术 机器手指研究获得突破

[2015-12-27]     麻省理工智能机器人最新消息,今年在研究机器手方面跨出了一大步,现在它又 ...