爱吧机器人网 » 技术 > 人工智能 > 正文

一个让深度学习惨败的通用人工智能领域——语境处理

\
“Context”是指用来解释一段给定文本或语句的来源框架,我们可以翻译为上下文或语境。

维基百科将“context”定义为:

*在符号学、语言学、社会学和人类学中,语境(context)是指围绕一个焦点事件的对象或实体,在这些学科中通常是某种交际事件。语境是“围绕事件的一个框架,为事件的恰当解释提供资源”。*

能处理语境是AGI(Artificial general intelligence,通用人工智能)的一个重要特征,特别是对于会话型角色。从这个意义上说,语境可以粗略地描述为谈话所依据的轨道。例如,当我们正在讨论19世纪英国的住房问题时,我们不希望谈话会随机转移到南极洲的企鹅或核聚变。语境将可能发生的会话项(conversational items)的解空间(solution space)缩小到合理预期或相关的范围。

语境处理是令深度学习技术惨败的一个领域。虽然可以在文本语料库上训练深度学习网络来提取有意义或合乎逻辑的信息,但这种技术利用的是语言结构中的模式,而不是真正的语境处理。

\
真正的语境处理是计算密集型的,是在句子、短语、问题、周围信息等之间构建关系图谱,并使用统计分析技术缩小合适的语境范围。

一句像“I love you”这样的话,如果没有周围的信息就会显得模棱两可。表面上这是一种爱情的声明,但如果是跟对立的人说就可能代表讥讽,如果对朋友说又可能代表一种感激或深厚友谊。要搞清楚语境,必须追踪周围信息并与语句相关联。

AGI需要一个应用程序/引擎来跟踪语音/文本以及其他形式的相关信息,以便解析语境。周围的信息不局限于会话中提供的信息,还包括来自知识库和常识的信息。

让我们以一些随机的double entendres(双关语)为例,来说明语句中的歧义是通过知识来解决的:

1.Panda mating fails: veterinarian takes over.

2.Miners refuse to work after death.

3.New obesity study looks for larger test group.

4.Children make nutritious snacks.

5.Criminals get nine months in violin case.

在上述例子中,我们注意到歧义是通过应用我们称之为常识的知识来解决的。运用常识并不一定意味着我们会得到真相,因为奇怪的事情也会发生。例如,在正常的常识下,人类不吃儿童,所以说“Children make nutritious snacks.”在能让人不误解的同时表达出一种幽默感。但是,如果这是一本名为《食人时代》的出版物中的头条新闻,那很可能就是一个合理的观点

因此,在确定语境时,我们必须了解所有周围的信息,这些信息的地位高于一般预期。

语境也与memory(记忆或内存)有关。在许多情况下,语句里的上下文可以指代以前的对话,并且在某些情况下,可以不显式地引用。例如,类似“the pidgeon is in the bath”的暗号将指代事先约定的含义,而不是当前字面意思。因此,在不知道约定含义的情况下,对该陈述的分析就会导致无价值结果。引擎追踪语境必须足够灵活,以允许包含特设的上下文映射。

另一种场景是,手势、眼神、脱离语境陈述(out-of-context statements)等暗示了一种与先前语境的关系。例如,一场谈话可能关于某个家庭成员健康,几个小时后,可能会出现一个带有微笑的“he’s ok”的陈述。把前后这两种语境联系起来是一个统计学可能性的问题。语境引擎必须能够在较长的时间内连接上下文并保留所收集的信息。

Double entendres是语音/文本中另一类有趣的歧义。然而,在这里,真正的语境必须从呈现的画面中推断出来。例如,“he grasped the long hard cold steel rod firmly”。因此,任何语境引擎都必须能够将单词与画面联系起来,然后再与类似的项连接起来。在潜台词(sub-text)优先于字面意思(presented text)的语音或文本中,double entendres只是其中一类,此外还常见于带有政治色彩的作品,或是处理禁忌的作品。

语境引擎是一个高度复杂的应用程序,很难实时运行。在某些情况下,可以通过额外的进程实现再解释(re-interpretations),并且在交互场景中,其必须作为修正引入AGI的会话语音中。如果AGI呈现为一个单独的实体,比如一个人,这可能意味着要等一会儿。但是,如果AGI呈现为多个实体,例如一群人,那么当数据变得可用并呈现为一个组讨论(group discussion)时,就可能会发生中断。

\
语境引擎依赖于坚实的知识库和关于世界及行为的常识信息。没有这一点,误解将频繁发生,自然语言处理/理解的目标将无法实现,AGI可能也将无法实现。



——End——

爱吧机器人网原创编译,转载需注明。

上一篇:研究人员融合人类与AI的创造力 显著提高了深度学习的表现
下一篇:17世纪的莱布尼茨试图制造“思想机器”却被现实打脸
精选推荐
美国普渡大学研发快动作软体机器人,灵感来自变色龙舌头捕食
美国普渡大学研发快动作软体机器人,灵感来自变色龙舌头捕食

[2019-10-31]  本文图片均来自:Ramses v Martinez 普渡大学变色龙、蝾螈和许多蟾蜍利用积蓄的弹性能量,向距离1 5倍体长的毫无防备的昆虫伸出粘糊糊的舌 ...

农业将为高科技行业 农业机器人的应用领域
农业将为高科技行业 农业机器人的应用领域

[2017-12-17]  农业正在迅速成为一个令人兴奋的高科技产业,吸引了新专业人士,新公司和新投资者。技术发展迅速,不仅提高了农民的生产能力,而且促进了我们所知道的机器人和自动化技术的发展。...

苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展
苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展

[2017-12-11]  苹果隐秘的自动驾驶汽车项目多年来一直在转移焦点,但今年似乎正在加速。 4月份,公司获得了在加利福尼亚州进行自动驾驶汽车测试的许可证,而在6月份,苹果公司首席执行官库......

新型轻便机器人套装重5kg,辅助跑步和步行
新型轻便机器人套装重5kg,辅助跑步和步行

[2019-10-23]  虽然步行对大多数人来说似乎不是负担,但对有些人来说,这项简单的运动往往会让人感到筋疲力尽。比如手术或中风后恢复的患者、帕金森氏症患 ...

智能机器人困惑的时候知道该问什么问题
智能机器人困惑的时候知道该问什么问题

[2017-03-20]   照片:Nick Dentamaro 布朗大学 上周,我们提到了麻省理工学院的一些研究,即通过链接人的大脑来帮助机器人在他们将要犯错误的时 ...

英伟达用联合学习创建医学影像AI 可共享数据和保护隐私
英伟达用联合学习创建医学影像AI 可共享数据和保护隐私

[2019-10-14]  英伟达(Nvidia)和伦敦国王学院(King’s College London)的人工智能研究人员利用联合学习训练了一种用于脑肿瘤分类的神经网络, ...

比利时研发出可以自我愈合伤口的软体机器人
比利时研发出可以自我愈合伤口的软体机器人

[2017-09-03]  软体机器人是机器人技术的新兴领域; 他们“可以与人类相互作用,而不会杀死他们,并拿起像西红柿这样柔软的物体。” 从长远来看,布鲁塞尔大学队伍正在努力创建一个类似的材......

人工智能民主化能否实现取决于科技巨头
人工智能民主化能否实现取决于科技巨头

[2017-12-29]  我们经常听到像谷歌和微软这样的公司说他们希望人工智能民主化。这是一个很好的词,民主化。 但这些公司如何界定“民主化”还不清楚,像AI本身一样,它似乎有点炒作的味道...

本周栏目热点

说一说那些进入日常生活的智能机器人

[1970-01-01]    从《星球大战》里的机器人英雄,到前些年大受欢迎的电影《我,机器人》,无数的科幻作品里都少不了机器人元素,人们将之视为 未来感的 ...

奇点大学:人工智能与“奇点理论”

[1970-01-01]    就在前几天和行业内的几个朋友吃饭时,内容在不经意间又转向了那个老生常谈的话题-到底什么是在智能电视上最好的交互方式上,于是乎五 ...

说客小π情感机器人体验【评测】

[2015-12-29]     前言  随着语音识别技术的发展,声控灯、语音输入法、语音交互等各具特色 ...

Facebook人工智能机器人生成照片以假乱真

[1970-01-01]    无论你是否认为面部识别令人毛骨悚然,很明显全球多家科技公司正在继续投资开发更强大的图像智能技术。  无论是微软的猜年龄机器人, ...

麻省理工智能机器人最新技术 机器手指研究获得突破

[2015-12-27]     麻省理工智能机器人最新消息,今年在研究机器手方面跨出了一大步,现在它又 ...