垃圾邮件过滤:比如Gmail;
更具体的一个案例,比如IBM Watson能够在病人诊断提供相应的资料。
这些互动即能提升系统的性能,有可以培养用户使用产品的习惯,促使他们更长时间的使用。
记住一点,对于那些我们不了解的事物,我们很难完全信任。
4、人工智能领域投资的现状
首先,我们需要看看全球的投资市场,在2015年前三个季度,共有470亿美元的投资,这个数字放在过去20年全年投资总额来看,已经超过了其中17年全年投资总额。我们预计年底会达到550亿美元。
现在,约有900家人工智能相关的企业,绝大多数聚焦在商务智能、金融和安全领域。2014年第四季度,由Vicarious, Scaled Inference, MetaMind 和Sentient这些公司掀起了一阵投资热潮。
到目前为止,也就是从2015年1月1日到2015年12月1日,我们预计约有300笔人工智能公司的投资,这里所谓的人工智能公司包括其产品或技术涉及到人工智能、机器学习、计算机视觉、自然语言处理、数据科学、神经网络、深度学习等。这其中有几个数字值得关注:80%的投资少于500万美元;90%的现金投资发生在美国,欧洲只有13%;75%的多轮融资发生在美国。
有33个合并或并购的交易以及1个IPO公司Adgorithms。这些交易中,除了6家欧洲公司,1家亚洲公司,其他都是美国公司。比较大的三笔交易:Twitter 5亿3200万卖下TellApart(该公司之前融资1700万美元)、BlueCoat 2亿800万卖下Elastica(该公司融资4500万美元)、IronSource1亿5000万卖下SupersonicAds(该公司融资2100万美元)。这些交易对于投资者的回报还是比较可观的,其他的交易更多的还是基于对人才的争夺,现阶段人才并购基本都是6到7人的小团队。
总体来看,人工智能的投资在整个风险投资的比例大约为5%。这要高于2013年宣称的2%,不过仍然远远低于广告、移动以及商务智能软件。有两个要点;其一,人工智能公司的投资收益刚刚出现,表现在一些小规模的多轮融资;其二,绝大多数的投资发生在美国地区。
亟待解决的问题目前有两个:
(1)健康
我曾经花费大量时间研究基因对于癌细胞扩散的作用,在医疗方面我认为面临诸多挑战,离疾病的治愈还有很长一段时间。现在,我认为我们需要实时检测身体状况,降低照顾病人的费用。
我们现在每天接触的设备可以追踪我们的运动、心跳、睡眠甚至生殖状况。我们现在在线的时间要远远大于离开互联网的时间,我们也不在担心存储在云端的健康数据。当然,不管新闻如何渲染所谓的隐私困扰,我们每天依然使用互联网,还用来追踪身体数据。
我们拥有了从未有过的的庞大人口健康数据库,从中可以挖掘出更多关于基因影响疾病的洞察和分析。如今,我们的医院是如何运作的呢?一个病人在医院陈述自己的病情,医生必须通过大量设备来做出诊断。未来,在一个实时连接、实时追踪健康市局的时代,我们可以提前预测到某个人可能患上什么疾病,并提前制定干预或治疗措施。这需要大量基于人工智能的应用程序:比如智能传感器、信号处理器、深度学习等等。
下面这些公司都致力于解决这个问题:
Sano:基于血液的生命指标检测;
Enlitic/MetaMind/Zebra Medical:用于辅助医生决策的视觉系统;
Deep Genomics/Atomwise:学习、模拟和预测基因如何影响人类健康和疾病,理解药物如何应对疾病的变化;
Flatiron Health:为诊所和医院提供海量的医学研究数据;
谷歌:一份无针采血的专利展现出谷歌对于未来可穿戴设备的想象力。
(2)企业自动化
未来的企业可以自己运行吗?根据BAML的数据,人工智能驱动的知识工作自动化将在2020年减少9亿英镑的劳动力成本。鉴于机器人带来的效率提升,我认为离全自动企业运行的实现已经很近了。
想象一下,企业运行的核心模块,包括CRM、市场营销、财务、法律、网站部署、客户交互、招聘和商务智能都以SaaS交付。而类似于Zapier 或Tray.io的产品,可以实现在不同模块之间的连接。进一步来看,基于实时数据的决策也可以实现。或许,我们需要重新思考一下电子商务公司,当你完成在上面注册后,你的商品清单、价格、交易、推荐、客户交互、打包发货等等或许都可以自动化完成。
5、远景
我非常看好人工智能对于我们生活和工作的所带来的价值。我认为存在一些低风险的投资机会,特别是短期内就有受益的项目。对于那些致力于长期创新的公司来说,需要给他们更多的支持。
我们必须记住技术的商业化,这要求创业者必须理解你的产品,你的客户以及你给客户带来的价值。最后,你必须考虑在美国市场展现你的创意和产品,正如上文所言,几乎所有的投资都发生在这个地区。
机器之心编译出品,编译:赵赛坡。