1.VSLAM(视觉SLAM)
指在室内环境下,用摄像机、Kinect等深度相机来做导航和探索。其工作原理简单来说就是对机器人周边的环境进行光学处理,先用摄像头进行图像信息采集,将采集的信息进行压缩,然后将它反馈到一个由神经网络和统计学方法构成的学习子系统,再由学习子系统将采集到的图像信息和机器人的实际位置联系起来,完成机器人的自主导航定位功能。
但是,室内的VSLAM仍处于研究阶段,远未到实际应用的程度。一方面,计算量太大,对机器人系统的性能要求较高;另一方面,VSLAM生成的地图(多数是点云)还不能用来做机器人的路径规划,需要进一步探索和研究。
2.Wifi-SLAM
指利用智能手机中的多种传感设备进行定位,包括Wifi、GPS、陀螺仪、加速计和磁力计,并通过机器学习和模式识别等算法将获得的数据绘制出准确的室内地图。该技术的提供商已于2013年被苹果公司收购,苹果公司是否已经把 Wifi-SLAM 的科技用到iPhone上,使所有 iPhone 用户相当于携带了一个绘图小机器人,这一切暂未可知。毋庸置疑的是,更精准的定位不仅有利于地图,它会让所有依赖地理位置的应用(LBS) 更加精准。
3.Lidar SLAM
指利用激光雷达作为传感器,获取地图数据,使机器人实现同步定位与地图构建。该技术是目前最稳定、最可靠、高性能的SLAM方式。就技术本身而言,经过多年验证,已相当成熟,但Lidar成本昂贵这一瓶颈问题亟待解决。
采用Lidar SLAM构建出的室内地图
<上一页 1 2 3 下一页>