我们还能做得更好吗?是的,可以。如果我们想要大概了解人工智能可能产生的任何问题,那么,最好的办法就是对闻所未见的问题主动出击,进行测试。也就是说,人工智能设计者在测试之前并不知道哪些问题是之前测试过的。至少,这是我们设计GVGAI(the General Video Game Playing Competition-通用电玩竞赛)的初衷。
借助GVG,任何人都可以为他们最好的人工智能选手「报名」,在这个特殊的服务器上,人工智能选手可以「玩」十个从未见过的游戏(除了竞赛组织者)。这些游戏的类型是八十年代早期个人电脑或者掌机上见过的类型;有些设计就是基于很多耳熟能详的游戏,比如钻石小子,吃豆人、太空侵略者、推箱子、导弹指令。比赛的获胜者无疑是在这些没有接触过的游戏中表现最好的人工智能「选手」。因此,人工智能设计师没办法针对某个特定游戏调适他们的软件。GVGAI大约有50个游戏可以用来训练你的人工智能,每次迭代都会推出更多游戏。
目前,50个游戏并不是一个大的数目;我们如何获取新的游戏呢?首先,所有游戏必须经过一种被称为「电玩描述语言」的标准进行编程。我们设计出这种简单的语言用来编写游戏,同时满足嵌入性和可读性的条件,类似网页编辑所用的HTML。这种语言的设计主要是为了可以解码经典的掌机游戏;这意味着所有游戏的设计都是基于动作和交互这两个维度。在Wolfenstein3D面世前,这两项是所有电玩设计中最重要的。无论如何,这种语言的简单性方便了新游戏创作,不论是从头开始制作或者是对现存游戏进行变化。(捎带说下,作为此项目的分支,我们正在探索VGDL作为游戏开发的原型工具。)
即使是将编写游戏这件事简单化了,仍然无法解决一个根本问题——还是需要有人进行编写和设计。由于GVG-AI的定位是能够最大可能的满足人工智能测试,我们需要源源不绝的游戏产生出来。因此,我们需要自动生成,需要有软件能够实现:只需点一下,就有新游戏产生,而这些游戏也不能太过简单,要是那种需要人工智能玩家具备一定技巧的好游戏。(副作用是,人类玩家可能也喜欢玩。)
我知道,设计出可以设计新游戏的软件听起来非常困难。然而,我们已经试图攻克该领域多年,我坚信这件事是可行的。CameronBrowne已经成功搭建了一个设计棋盘游戏的生成器,而我们最近的一些工作正致力于自动生成简单的VGDL游戏,尽管距离成功仍需时日。并且,生成游戏的一部分明显可行,比如游戏等级;过去五年,有很多研究专注于进度内容生成——游戏内容的自动生成。研究人员已经证实,诸如演化算法,计划以及回答设定编程之类的方法能够自动创造等级、地图、故事、项目和几何图形状,基本上可以生产游戏的其他任何内容类型。现在,研究的挑战在于泛化这些方法(意味着可以使用在任何游戏上,而不是针对某个特定游戏),让这些方法更具综合性,以便他们能够生成各种游戏元素,包括游戏规则。大多数生成方法包括对正被生成的游戏进行某种形式的模拟,这意味着玩游戏和游戏生产的问题是错综复杂联系在一起的,任何时候都应该一并思考。
<上一页 1 2 3 4 5 6 下一页> 余下全文