2.3.3“深度学习”技术的出现
“深度学习”是机器学习研究中的一个新的领域,它模拟人类大脑神经网络的工作原理,将输出的信号通过多层处理,将底层特征抽象为高层类别,它的目标是更有效率、更精确地处理信息。深度学习自2006年由Geoffrey
Hinton教授和他的两个学生被提出后,使得机器学习有了突破性的进展,极大地推动了人工智能水平的提升。2013年,《麻省理工技术评论》把它列入年度十大技术突破之一。
人脑具有一个深度结构,认知过程是逐步进行,逐层抽象的,能够层次化地组织思想和概念。深度学习之所以有如此大的作用,正是因为它较好地模拟了人脑这种“分层”和“抽象”的认知和思考方式。
深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。因此,“深度模型”是手段,“特征学习”是目的。区别于传统的浅层学习,深度学习的不同在于:1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;2)明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。
深度学习使得人工智能在几个主要领域都获得了突破性进展:在语音识别领域,深度学习用深层模型替换声学模型中的混合高斯模型(GaussianMixture
Model,GMM),获得了相对30%左右的错误率降低;在图像识别领域,通过构造深度卷积神经网络(CNN),将Top5错误率由26%大幅降低至15%,又通过加大加深网络结构,进一步降低到11%;在自然语言处理领域,深度学习基本获得了与其他方法水平相当的结果,但可以免去繁琐的特征提取步骤。可以说到目前为止,深度学习是最接近人类大脑的智能学习方法。
深度学习引爆了一场革命,将人工智能带上了一个新的台阶,将对一大批产品和服务产生深远影响。
2.3.4“人脑”芯片将从另一个方向打开人工智能的大门
前面提到了现代计算机的冯·诺依曼体系结构阻碍了大规模并行计算的实现,导致人工智能发展受限。而今天人工智能发展面临突破,除了上文说的云计算、大数据、深度学习三个原因之外,另外一个方向的努力也是不容忽视的,那就是彻底改变了冯·诺依曼体系结构的“人脑”芯片。
“人脑”芯片,也叫神经形态芯片,是从硬件方向对人脑物理结构的模拟。这种芯片把数字处理器当作神经元,把内存作为突触,跟传统·冯诺依曼结构不一样,它的内存、CPU和通信部件是完全集成在一起,因此信息的处理完全在本地进行。而且由于本地处理的数据量并不大,传统计算机内存与CPU之间的瓶颈不复存在了。同时神经元之间可以方便快捷地相互沟通,只要接收到其他神经元发过来的脉冲(动作电位),这些神经元就会同时做动作。
<上一页 1 2 3 4 5 6 7 8 9 10 下一页> 余下全文