第二大脑:棋局评估器 (Position Evaluator)
AlphaGo的第二个大脑相对于落子选择器是回答另一个问题。不是去猜测具体下一步,它预测每一个棋手赢棋的可能,在给定棋子位置情况下。这“局面评估器”就是论文中提到的“价值网络(Value Network)”,通过整体局面判断来辅助落子选择器。这个判断仅仅是大概的,但对于阅读速度提高很有帮助。通过分类潜在的未来局面的“好”与“坏”,AlphaGo能够决定是否通过特殊变种去深入阅读。如果局面评估器说这个特殊变种不行,那么AI就跳过阅读在这一条线上的任何更多落子。
局面评估器是怎么看这个棋盘的。深蓝色表示下一步有利于赢棋的位置。
局面评估器也通过百万级别的棋局做训练。Silver团队通过 复制两个AlphaGo的最强落子选择器,精心挑选随机样本创造了这些局面。这里AI 落子选择器在高效创建大规模数据集去训练局面评估器是非常有价值的。这种落子选择器让大家去模拟继续往下走的很多可能,从任意给定棋盘局面去猜测大致的双方赢棋概率。而人类的棋局还不够多恐怕难以完成这种训练。
增加阅读
这里做了三个版本的落子选择大脑,加上局面评估大脑,AlphaGo可以有效去阅读未来走法和步骤了。阅读跟大多数围棋AI一样,通过蒙特卡洛树搜索(MCTS)算法来完成。但AlphaGo 比其他AI都要聪明,能够更加智能的猜测哪个变种去探测,需要多深去探测。
蒙特卡洛树搜索算法
如果拥有无限的计算能力,MCTS可以理论上去计算最佳落子通过探索每一局的可能步骤。但未来走法的搜索空间对于围棋来说太大了(大到比我们认知宇宙里的粒子还多),实际上AI没有办法探索每一个可能的变种。MCTS做法比其他AI有多好的原因是在识别有利的变种,这样可以跳过一些不利的。
Silver团队让AlphaGo装上MCTS系统的模块,这种框架让设计者去嵌入不同的功能去评估变种。最后马力全开的AlphaGo系统按如下方式使用了所有这些大脑。
1、从当前的棋盘布局,选择哪些下一步的可能性。他们用基础的落子选择器大脑(他们尝试使用更强的版本,但事实上让AlphaGo更弱,因为这没有让MCTS提供更广阔的选择空间)。它集中在“明显最好”的落子而不是阅读很多,而不是再去选择也许对后来有利的下法。
2、 对于每一个可能的落子,评估质量有两种方式:要么用棋盘上局面评估器在落子后,要么运行更深入蒙特卡罗模拟器(滚动)去思考未来的落子,使用快速阅读的落子选择器去提高搜索速度。AlphaGo使用简单参数,“混合相关系数”,将每一个猜测取权重。最大马力的AlphaGo使用 50/50的混合比,使用局面评估器和模拟化滚动去做平衡判断。
这篇论文包含一个随着他们使用插件的不同,AlphaGo的能力变化和上述步骤的模拟。仅使用独立大脑,AlphaGo跟最好的计算机围棋AI差不多强,但当使用这些综合手段,就可能到达职业人类选手水平。
AlphaGo的能力变化与MCTS的插件是否使用有关。
这篇论文还详细讲了一些工程优化:分布式计算,网络计算机去提升MCTS速度,但这些都没有改变基础算法。这些算法部中分精确,部分近似。在特别情况下,AlphaGo通过更强的计算能力变的更强,但计算单元的提升率随着性能变强而减缓。
优势和劣势
我认为AlphaGo在小规模战术上会非常厉害。它知道通过很多位置和类型找到人类最好的下法,所以不会在给定小范围的战术条件下犯明显错误。
但是,AlphaGo有个弱点在全局判断上。它看到棋盘式通过5*5金字塔似的过滤,这样对于集成战术小块变成战略整体上带来麻烦,同样道理,图片分类神经网络往往对包含一个东西和另一个的搞不清。比如说围棋在角落上一个定式造成一个墙或者引征,这会剧烈改变另一个角上的位置估值。
就像其他的基于MCTS的AI, AlphaGo对于需要很深入阅读才能解决的大势判断上,还是麻烦重重的,比如说大龙生死劫。AlphaGo 对一些故意看起来正常的局也会失去判断,天元开盘或者少见的定式,因为很多训练是基于人类的棋局库。
我还是很期待看到AlphaGo和李世石9段的对决!我预测是:如果李使用直(straight)式,就像跟其他职业棋手的对决,他可能会输,但如果他让AlphaGo陷入到不熟悉的战略情形下,他可能就赢。
结语
这里我还想到另一个人,中国最强大脑选手鲍橒,当时看了他走出蜂巢迷宫,被他的超强的空间记忆和想象能力深深震撼了,而他的职业就是围棋选手,并且是盲棋。他能完成1对5的围棋盲棋,实在是很不可思议的事情。在围棋圈内,几乎没有棋手能完成盲棋,因为确实太难了。笔者也向他询问了对这个事情看法,他说,欧洲冠军没能摸到程序的底,但从棋谱来说,对谷歌程序我也难以取胜,确实下的不错。虽然围棋圈一致看好李世石,不过我不敢确定谷歌的程序3月份进展到什么地步。
再说到Facebook田博士,跟谷歌DeepMind超豪华团队长期投入不同,他就在半年多前从立项到实现,直到最近才有一个实习生加入帮他,而背后是他付出的心血,为了抢时间,在圣诞新年都是加班加点,按他所说,每日工作10+小时,自己搭机器,写代码,调参数,单枪匹马做出成绩。
谈到跟谷歌团队的较量,田博士说:“这是一场必败的战斗”,但我还是很佩服他,他让我想到三国时代赵子龙,单枪匹马大战曹军,力拔山兮气盖世!因为他是真正的勇士。正是有了这些英勇无畏的科学家,一次次打破常规,挑战极限,我们才知道人类如此大的潜力。最近短短几年的发展,从大数据,深度学习人工智能到虚拟现实,从发现了类地球行星,证实引力波,从Hyperloop,无人驾驶,量子计算,这些魅力无穷的科技让我们对世界的认识上升到新的高度。面对这个激动人心的时代,我想说,天空是我们的极限,宇宙是我们的极限,未来才是我们的极限!