尽管有了更智能的算法、有了能力更强的机器人,但超智机器的未来仍然更像是科幻而不是科学。Facebook AI Research 的负责人 Yann LeCun 说,现在 “AI 的智能水平还远不如一只老鼠。” 是的,IBM 经年累月的编程和白花花的银子砸出了Watson,2011年 这台机器在智力竞赛中击败了最聪明的人类选手,现在,它是该公司 “认知计算” 行动的基矗一秒钟它可以阅读完 8 亿页的信息,消化掉维基百科的一整个语料库,更不用说几十年的法律和医学杂志。但是它不能教你如何骑自行车,因为它的智能是狭隘的—它对世界如何运作一无所知。西雅图 Allen Institute for Artificial Intelligence 的 Aristo 是最复杂的 AI 程序之一,但是对于 “人呼吸空气” 这样的句子却是一头雾水。因为要想理解这个句子,你需要一些常识—但机器没有常识。哪怕常识可以通过语言定义,程序也不知道呼吸空气是否就是人活下来之所需;也不知道人是一分钟呼吸一次还是一辈子只用呼吸一次。
一些给人留下深刻印象的功能,如能让用户用不同语言实时对话的 Skype Translator(目前还是预览版),也还有很长的路要走。在跟意大利的一个人对话时,我对天气的评论被翻译成了对圣经的解释。
当然,这并不是说智能机器的崛起只是一个虚幻,也不是说天网不会在我们难以想象的数据点集合中突然出现。自动武器,比如可以自行根据人脸识别技术等数据执行任务的无人机杀手(参见无人机百年史话)就是真正的威胁。但它们不是不会对人类这个物种的生存造成威胁。朝鲜黑客突然之间创造出一种让金三有能力对世界发动终结者式攻击的新算法的可能性也很低。在这种语境下,AI 不像 iPhone,写出一个新 app 你的活就干完了。这更像是自己来造互联网—这只能慢慢完成,要通过日积月累的点滴进展。百度首席科学家吴恩达最近告诉我说:“担心杀手机器人就像是在担心火星出现人口过剩一样—我们还有很多时间去解决麻烦。”
实际上,对杀手机器人夸大其词的问题在于它掩盖了我们所面临的智能机器崛起的真正风险—工人因为被机器人替代而失业,战争中使用自动武器的增加,还有这个简单的事实,我们越是依赖机器,有东西出问题时我们的风险就越高。我们生活在这样一个世界的问题在于人际关系的疏远—我们跟机器的对话比跟人聊得更多(可以看看电影《her》),在于艺术变成了一种和谐的算法输出(参见机器学习艺术,Facebook 的深度学习系统可造出以假乱真的图像)。AI 时代还会对隐私造成影响深远的挑战,不仅仅有智能无人机在天上监视你,企业也会跟踪你的一举一动好卖东西给你。正如伦理道德研究院的 CTO Marcelo Rinesi 总结那样:“未来不是机器人一只脚永远踩在人脸上(注:原句出自奥威尔的《1984》:如果你要设想一幅未来的图景,就想象一只脚踩在一张人脸上好了——永远如此)。而是一个你看到的一切东西里面都有一个小小的电话推销员的世界,一个知道有关你的一切,永远不会停止卖东西给你的世界。”
这还掩盖了与机器深层次结盟所带来的好处。大多数的研究人员,像 DeepMind 的 Demis Hassabis 就认为,如果我们赋予机器智能的话,它们就能够帮助我们解决疾病和医疗保健这样的大问题,也能帮助科学家攻克气候变化和物理学方面的大难题。微软的 Eric Horvitz 对 AI 的展望甚至更加宏伟:“对于人类来说,一个大的问题是我们的经验是不是可以计算的?如果是的话,对我们思维方式的更好理解,能不能告诉我们一些有关我们作为地球生命是什么样的新发现?有了这些自我认知之后,我们有能够做些什么呢?”