凡事都是“说易行难”。现有机器翻译的主流思路,分为“符号进路”与“统计进路”两种。很可惜,这两种进路都无法忠实地落实关于“飞跃与抵达”的翻译经验谈。
先来看“符号进路”。按此进路,在机器翻译中可以先做一个巨型双语语料库,并凭借现有的双语翻译词典,搭架起一座桥梁。更精细的建模工作,甚至还要求对个别词汇进行语义框架构建。譬如,“排骨”这词的框架,就自带有与诸如“猪皮”“高汤”“蹄”之类词汇相关的推理关系表征。这样,系统一旦触发一个特定词汇,就会形成与之相关的语义框架,并由此使得一些简单的语义推理成为可能。
然而,对于“符号进路”的机器翻译路径而言,需要编程员预先对大量双语语料对应关系及各个词汇自身的语义框架进行建模。工作的繁琐度就不提了,其不灵活性更是一个致命伤。具体而言,信息再完备的此类系统,也很难对前面提到的“中国排骨”这样古怪的词语进行准确的信息解码。通常状态下,若不对整部小说有一定了解,恐怕就只能被译为“Chineseribs”这样的菜名了。但是,对于现有的翻译系统来说,对整部待译小说进行“宏观把握”,却是一个几乎不可能完成的任务。
再来看统计学机器翻译路径。它是由所谓“深度学习”系统来实现的。概而言之,“深度学习”是一个升级版的人工神经元网络系统。其基本工作原理是,在亚符号层面上将语义对象解析为一个复杂的特征簇,然后通过神经元网络的多层次加工,从中逐层将高阶语义重新构造出来。照此进路,一个诸如“排骨”这样的词汇,其原始形态只有数学特征、没有语义特征。由于允许系统对语义相似关系作出模糊处理,因而其灵活性显然超过“符号进路”系统。
不过,与陆先生的翻译智慧相比,“深度学习”网络的火候还差得远。且不提此类系统的运行所需要消耗的大量计算资源,光在一个问题上就完败了:它必须有大量的训练样本,以帮助其在一类源语言词汇与另一类目标语言词汇之间预先搭建起大致的相关性关系簇;然后,它才能够依循成例,摸索出与之比较接近的“跨越方式”。但是,像陆先生那样进行创造性“跨越”的大本领,此类系统还是学不来的。