爱吧机器人网 » 技术 > 人工智能 > 正文

[干货]一张地铁图看懂人工智能算法发展(含代码)

 或许你曾经困扰过:明明自家产品有自己的数据,明明算法模型很多开源,可为什么开发起来却问题多多? 要么拿到问题无从下手?

每一个大厨,心中都有自己的菜谱。要烹制一桌山珍海味,美味佳肴,自然要熟知三件事,原料(模型),调料(优化算法)和秘籍菜谱(这里常常只paper:paper会告诉你解决什么问题用什么模型与算法)。有了这三样,还要基本功扎实,拌、腌、炒、烧、蒸、炸、煮、煲基本手法样样不能少。(基本功扎实才能模型复现)

如果 你说 我只是个小学徒啊,厨艺小白,想自己学可怎么做,那就照着大厨的菜谱学着做。
如果 你说 我是个AI小白,也想了解人工智能深度学习,尤其是想解决应用方面的问题,那就照着下面这张地铁图,按不同方向,来学习菜谱,原料,调料和基本功吧。

01

地铁图总览


从AI研究的角度来说,AI的学习和跟进是有偏向性的,更多的精英是擅长相关的一到两个领域,在这个领域做到更好。而从AI应用的角度来说,每一个工程都可能涉及很多个AI的方向,而他们需要了解掌握不同的方向才能更好的开发和设计。因此我们从应用的角度 提出一个 roadmap ,描述不同方向的经典算法模型发展,以及应用上热门的算法。

第一个版本涉及的是 人,物 与艺术,三个大的部分。主要包括了图像方向的十二个子方向,里面列的模型除了商业化的部分外,其他大部分具有相关的开源算法与模型。

详细算法,文章,开源代码等具体可以参见网址,如果喜欢别忘记右上角star一下哦:
https://github.com/weslynn/AlphaTree-graphic-deep-neural-network

大图链接 
https://raw.githubusercontent.com/weslynn/graphic-deep-neural-network/master/map/mapclean_1.0.png

02



 当我们谈论万物时,也许在谈论整个世界

成千上万的物体组成我们的世界,我们能够区分万物,也希望人工智能能够像我们一样理解这个世界。也就有了物体相关的算法发展。

最基础的是物体分类Object Classification。深度学习的发展证明它非常擅长解决分类问题。Object Classification 是所有发展的基础,很多其他方向的模型都是基于这个主线来改进的。

为什么算法都从图像领域发展而来?由于图像的数据最为丰富,卷积神经网络在图像上分类的稳定有效,1998年,LeNet,这个商用的手写数字识别网络就做出了有力的证明。而到了2012年,Alex Krizhevsky 设计了AlexNet 在当年的ImageNet图像分类竞赛中下第一,开始了深度学习的黄金时代。

学术界发表的paper一般可以分为两大类,一类是网络结构的改进,一类是训练过程的改进,如droppath,loss改进等。而网络结构设计发展主要有两条主线,一条是Inception系列(即上面说的复杂度),从GoogLeNet 到Inception V2 V3 V4,Inception ResNet。 Inception module模块在不断变化,一条是VGG系列(即深度),用简单的结构,尽可能的使得网络变得更深。从VGG 发展到ResNet ,再到DenseNet ,DPN等。
 

最终Google Brain用500块GPU训练出了比人类设计的网络结构更优的网络NASNet。

此外,应用方面更注重的是,如何将模型设计得更小,这中间就涉及到很多卷积核的变换。这条路线则包括 SqueezeNet,MobileNet V1 V2 Xception shuffleNet等。ResNet的变种ResNeXt 和SENet 都是从小模型的设计思路发展而来。

Object Detection 与Object Segmentation

对世界的理解仅仅通过分类知道这张图是关于什么的,是远远不够的,而物体检测和物体分割才能够达到对世界进行与人类似的理解。物体检测和语义分割,以及分割加检测结合的实例分割各发展了几年,但是最终发展到MaskRCNN算法对物体同时完成检测与分割的任务,并且有更优的表现。


人类文明的传承,离不开的是文字。文字的识别和理解在应用上有着特别的意义。传统的文档识别,早就有了相对稳定的解决方案,开源的Tesseract 是常用的方法,收费的ABBYY则一直效果处于世界前列。而复杂环境中的文字识别则随着DL的发展有着不错的进展。一方面是还是独立的检测与识别,一方面是也有了两者联合的端对端网络的探索。这一块国内白翔老师组 乔宇老师组都有一些模型在应用上效果不错。


03



 当我们谈论人时,也许在尝试了解自己

能让人工智能像我们一样理解我们自身,能够认识他是谁,理解他表达的喜怒哀乐,能够知道他在做什么,一直就是让人着迷的事情。一直以来,无数科研工作者都在相关方向上奋斗。而DL模拟人类视觉系统,首先取得较好成绩的也是在人脸相关的领域。

人脸相关领域在应用上的主要有:
1 人脸检测与追踪
2 人脸矫正与关键点检测
3 表情,性别,年龄,种族分析
4 人脸像素基本解析
5 人脸识别
6 活体检测与验证
7 大规模人脸检索
8 人脸的3D重建

其中 表情,性别,年龄,种族分析 就是基本分类问题,使用Object Classification中的方法就可以解决。而活体检测与验证一般通过增加其他设备,使用结构光,如红外,iphonex的FaceID,或者增加活体行为来进行,如常用的点头,眨眼,张嘴等。 而后者的基础,还是在 2 人脸矫正和关键点检测上。大规模人脸检索是在人脸识别的基础上更加工程化的工作。因此在这里我们选择了1 2 5 8 等四个方面来进行分析。


对于人的理解,还有一个关键,就是Pose Estimation 姿态估计单人算法发展,2016年 stacked hourglass 算法的提出,是一个重要标志,它结构简单,可扩展性强,性能优越,当时就拿下了MPII姿态分析竞赛 的冠军。即便到今天(2018/05/30),这个比赛单人组现在的第一名也是在它的基础上进行改进。

多人的算法,分成两个方向,一个自顶向下 top-down,主要关注上海交大 卢策吾组的RMPE/AlphaPose, 一个自底向上,bottom-up,主要关注CMU的 OpenPose。

此外,基于Pose相关的Segment也在发展,从2D到3D则有DensePose-RCNN。



04

艺术


 艺术,改变的是你看世界的方式

艺术是人类对世界的表达,以及我们对虚拟世界的创造。

用科技探索艺术是一件非常有意思的事情,而这些在应用上往往也能产生很好的产品。最知名的就是风格转换 (Neural Style),而探索的方法 有的基于基本的DL网络,有的基于GAN对抗生成网络。因此在这里用渐变色的绿色绘制了这个独特的轨道。深绿色是各种应用,浅绿色则代表了GAN的发展路线。


这里列出了很多很酷的应用,譬如说
Neural Doodle 使用深度神经网络把你的二流涂鸦变成艺术品。
Deep Painterly Harmonization 深度学习的一键P图
Deep Photo Style Transfer 风格转换的变种:照片风格转换
自动上色 等等
代码均可在下面网址找到
https://github.com/weslynn/AlphaTree-graphic-deep-neural-network

05

关于AlphaTree


AI中每一个领域都在日新月异的成长,而每一位研究人员写paper的风格都不一样,相似的模型,为了突出不同的改进点,他们对模型的描述和图示都可能大不相同。

为了帮助更多的人在不同领域能够快速跟进前沿技术,我们构建了“AlphaTree计划”,对上面提到的文章会对应开源代码,进行统一的图示,便于大家对模型的理解。模型的绘制设计 受到Fjodor van Veen所作的A mostly complete chart of Neural Networks 和 FeiFei Li AI课程中对模型的画法的启发
将一个深度神经网络模型简化成下图:

里面用到的图标有:

其实 简单来说 ,为了方便记忆,重要的结构只会选用七种彩虹色。 红橙黄绿蓝靛紫。 由于兼容Fjodor van Veen的设置,输入和输出暂时占用了两种颜色。 如果根据需求后期可能将输入输出改成其他不重要的颜色。

紫色(这里用的紫红色)为卷积,
红色为pooling,
绿色为全连接,
蓝色为Memory Cell,
靛(深蓝色)是反卷积。

现在Object Classificaiton部分里面涉及到的模型都根据源代码绘制完成了。

2018/05/30 目前object classification 主干部分基本完成 包括 LeNet, AlexNet, GoogLeNet, Inception V3,Inception-Resnet-V2, VGG, ResNet ,ResNext, DenseNet ,DPN等。

2018/06/15 完成 MobileNet 与 MobileNet V2.

其他: Face : mtcnn

OCR : CRNN CTPN Textboxes Textboxes++

Object Detection:ssd



譬如LeNet结构如下,一目了然,三层卷积层,进行了两次maxpooling,两层全连接层,最后输出接softmax:
下面一行是输入的图像 经过每一层后输出的尺寸。每个模型也会有对应paper中的结构介绍。欢迎大家围观,也欢迎大家加入。

如果有帮助,记得右上角star哦~ ღ( ´・ᴗ・` )比心

06

最后的最后


为什么要画这个?现在画合适吗?

其实 整理发展趋势,跟进论文的事情 一直在做,而图示各种模型的想法也早就有了。但是之前算法更新迭代非常迅速,很多发展方向都没有稳定下来,所以这件事情一直也没有着手去做。

平时沟通中,通过图示模型的表达也帮助过一些人理解,包含CEO,产品经理,程序员,AI小白…… 总体反响还不错,但是之前没有完整系统的输出。之前都是简版的沟通,也担心大家觉得看懂了图示,但觉得和paper的表达会不会有差距,就干脆图示和paper,代码做到了对应。

但是2017年年底 nasnet出来,机器设计的深度神经网络在性能上已经超越了人工设计的网络,在我看来,这是个很重要的信号。AI 从某种意义上来说,成为真正的AI。而以后人们常用的模型结构可能都是神经网络自我设计,或者teaching-student模型学习出来,里面的结构再也不是人类所能理解的。而一个优秀的新模型的诞生,是巨头们计算设备的比拼。

而对于很多公司,重心将转移到如何利用现有的模型,结合自己的数据,设计出最适合自己的模型。全民AI的时代正在到来。

最后,无论是想撩一撩,想加入AlphaTree ,想得到更多资讯,更多福利信息,教学视频,都可以去公众号找哦~

下载提醒:

如果想收藏map大图和分解小图,可以在AlphaTree(公众号:) 回复关键词“map”获取网盘链接

如果想收藏Object classification模型图原图,可以回复关键词“oc”获取网盘链接

如果想查看福利,如上T的论文 源码 视频等,可以回复关键词“福利"


上一篇:可能是最全的人工智能入门书单(附PDF链接)
下一篇:麻省理工实现人工智能无线信号穿墙识别及追踪
精选推荐
麻省理工正研究植物机器人 让植物自主控制机器人
麻省理工正研究植物机器人 让植物自主控制机器人

[2018-12-08]  控制论通常指人类用机器人部件增强自己。我们听说过动物机器人或昆虫机器人,但我们很少听说植物机器人对吧?一个机器人其实是对植物有很大益处的,因为一般植物根本无法移动......

为未来战场创造更有效的机器人 美国陆军研究人工纳米马达
为未来战场创造更有效的机器人 美国陆军研究人工纳米马达

[2019-10-11]  为了使机器人在战斗中更有效、更多才多艺地成为士兵的战友,美国陆军研究人员正在执行一项任务,即研究肌肉分子生命功能的价值,以及复制过 ...

如何让人工智能机器人快速自我纠正错误并吃一堑长一智?
如何让人工智能机器人快速自我纠正错误并吃一堑长一智?

[2017-08-23]  莱斯特大学数学系的研究人员在《Neural Networks》杂志上发表了一篇文章,概述了新算法的数学基础,可以使人工智能收集错误报告并立即纠正,而不影响现有技能 ,同时还会积......

2017年:AI渗入云端
2017年:AI渗入云端

[2017-12-29]  云中的人工智能不仅仅是科技巨头的权力游戏,它也可能是人工智能领域的下一个飞跃。加利福尼亚州的Rigetti Computing公司刚刚使用其原型量子芯片之一在其云平台上运行机器学......

深度神经网络揭示了大脑喜欢看什么
深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...

英国首台月球车是个小型四腿机器人 将于2021年登月
英国首台月球车是个小型四腿机器人 将于2021年登月

[2019-10-12]  探测器将用四条腿探测月球表面,并将数据传回着陆器,后者将把数据传回地球图 詹姆斯温斯皮尔英国即将成为继美国、俄罗斯、中国之后的又一 ...

谷歌宣布搜索算法重大升级,用BERT模型理解用户搜索意图
谷歌宣布搜索算法重大升级,用BERT模型理解用户搜索意图

[2019-10-26]  谷歌刚刚宣布,其搜索引擎的核心算法正在进行一项重大升级,这项升级可能会改变10%的搜索结果排序。此项升级应用了自然语言处理技术(BERT ...

美国喷气推进实验室的AI驱动无人机挑战人类飞行员
美国喷气推进实验室的AI驱动无人机挑战人类飞行员

[2017-12-08]  随着无人机及其组件越来越小,效率越来越高,功能越来越强大,我们已经看到越来越多的研究开始让无人机自主飞行在半结构化的环境中,而不依赖于外部定位。 宾夕法尼亚大学在......

本周栏目热点

说一说那些进入日常生活的智能机器人

[1970-01-01]    从《星球大战》里的机器人英雄,到前些年大受欢迎的电影《我,机器人》,无数的科幻作品里都少不了机器人元素,人们将之视为 未来感的 ...

奇点大学:人工智能与“奇点理论”

[1970-01-01]    就在前几天和行业内的几个朋友吃饭时,内容在不经意间又转向了那个老生常谈的话题-到底什么是在智能电视上最好的交互方式上,于是乎五 ...

说客小π情感机器人体验【评测】

[2015-12-29]     前言  随着语音识别技术的发展,声控灯、语音输入法、语音交互等各具特色 ...

Facebook人工智能机器人生成照片以假乱真

[1970-01-01]    无论你是否认为面部识别令人毛骨悚然,很明显全球多家科技公司正在继续投资开发更强大的图像智能技术。  无论是微软的猜年龄机器人, ...

麻省理工智能机器人最新技术 机器手指研究获得突破

[2015-12-27]     麻省理工智能机器人最新消息,今年在研究机器手方面跨出了一大步,现在它又 ...