爱吧机器人网 » 技术 > 机器人学 > 正文

OpenAI利用人工智能教机器人操纵物体 为灵活性设定新基准

OpenAI利用人工智能教机器人操纵物体 为灵活性设定新基准
这个世界上没有任何东西能够非常接近人手的敏捷性和灵活性,无论是动物还是机器人。对于埃隆·马斯克创立的非营利组织OpenAI的工程师来说,这既是挑战也是机遇。它们的研究人员如何使用人工智能来教导机器人像人一样巧妙地操纵物体?

通常,在教授AI来控制物理机器人时,科学家们往往会遇到同样的问题。培训通常使用强化学习来完成;AI通过反复试错的学习方法。但这需要很多时间,几乎相当于多年的经验。如果你想让AI打赢一场电子游戏,很简单,你只需要让它以更快的速度玩游戏。但如果你想教它一个真实的任务,那就麻烦了。你无法等待机器人手臂经历多年的练习,并且很难足够准确地出于训练目的模拟世界。

对于OpenAI,它们自己设定的任务是教一个机器人用手来操纵一个六面立方体;将这个立方体从一个位置移动到另一个位置,使特定的一面朝上。与早期的研究一样,首先尽可能准确地模拟这种环境,但下一步却产生差异:开始弄乱模拟。

OpenAI利用人工智能教机器人操纵物体 为灵活性设定新基准图片来源:OpenAI

首先,添加了随机视觉噪音;然后,改变了虚拟手和立方体的颜色。它们随机化了立方体的大小;表面有多滑;有多重。它们甚至弄乱了模拟的重力。所有这一切的效果是让AI更好地理解在现实世界中操纵立方体的可能性。虽然模拟可能不是完全真实的,但它有足够多的变化,允许系统学习处理意外。

参与该项目的OpenAI的Matthias Plappert解释说,改变模拟的重力是一个特别有趣的变量。该团队知道,当AI系统(称为Dactyl)正在控制真正的机器人手时,手的基部每次可能不会以相同的角度定位。较低的角度意味着立方体会更容易从手中掉落。为了教Dactyl如何处理这种变体,他们决定将模拟中的重力随机化。 “没有这种随机化,它就会一直弄丢物体,因为不习惯。”Plappert说。

通过所有这些随机化需要很长时间。很长一段时间。事实上,Dactyl必须积累大约100年的经验才能达到最佳表现。反过来,这意味着团队必须使用大量的计算能力 —— 大约6,144个CPU和8个非常强大的英伟达 V100 GPU。这种硬件只有极少数研究机构才能使用。

但Plappert说,最终的结果是值得的。完成训练后,Dactyl能够将立方体从一个位置移动到另一个位置,连续50次,而不会掉落。 (虽然它这样做的中位数要小得多;只有13次。)在学习移动立方体的过程中,Dactyl甚至开发了类似人类的行为。所有这些都是在没有任何人为指导的情况下学到的 —— 只是反复试错,几十年一次。

“这表明我们人类为操纵所做的事情是非常优化的。”Plappert说。 “当你看到一个试图解决问题的机器人时,这是一个非常有趣的时刻,你会想‘噢,嘿,我也会这样做。’”

OpenAI利用人工智能教机器人操纵物体 为灵活性设定新基准图片来源:OpenAI

机器人技术和人工智能领域的专家对The Verge高度赞扬了OpenAI的工作,但警告说它并不代表机器人操纵有了突破。卡内基梅隆大学机器人研究所的Smruti Amarjyoti指出,随机化系统训练环境的想法之前已经完成,但是说Dactyl的动作是“优雅的”,他认为对AI来说是不可能的。

“最终的结果非常复杂和精细。”Amarjyoti说,“[但]我认为OpenAI在这一领域的最大成就将是,它所采用的工程协调以及用于实现这一壮举的计算能力。”

Istituto Italiano di Tecnologia的机器人学教授安东尼奥·比奇(Antonio Bicchi)表示,这项研究“优雅且令人着迷”,但指出了一些局限性。 “结果仍然局限于在相当有利的条件下(手正面朝上,所以骰子落在掌中)进行的一个特定任务(滚动一个大小合适的模具),对于这些技术能解决现实世界的机器人问题,甚至不是一个确凿的论据。”比奇说。

对于OpenAI来说,这项研究大体上是令人满意的。该系统使用了许多与实验室开发的相同算法和技术,来教授其电子游戏机器人OpenAI Five。该公司建议,这表明它正在构建通用算法,可以用来处理各种各样的任务,对于雄心勃勃的AI实验室和公司来说,这是一个里程碑。

在人工智能的帮助下创建更灵巧的机器人,对于尝试自动化手工劳动的公司来说,将是一个巨大的福音,并且有许多初创公司积极地在该领域进行研究。 但是,提高机器人技术的先进水平肯定会让更多的工作岗位自动化,而这种工作破坏浪潮是否可以被新技术创造的工作所抵消,这是一个悬而未决的问题。

不管怎样,很明显,人工智能还有一段路要走,才能与人类的运动技能相匹配。但毫无疑问,机器正在迎头赶上,比以往任何时候都要快。


上一篇:机械臂还能这样玩?Touch & Melt:抽象触觉和机器人热成型
下一篇:机器人也可以有触觉?这个神经网络让假肢都能有反射丨Science
精选推荐
MIT最新“人机”互连系统 让双腿机器人复制人体技能
MIT最新“人机”互连系统 让双腿机器人复制人体技能

[2019-11-01]  MIT的小爱马仕想借用你的大脑 ,图片来自: João Ramos爱吧机器人网消息,麻省理工学院(MIT)的研究人员展示了一种新型遥操作系 ...

MIT研制出可以像植物一样生长的机器人
MIT研制出可以像植物一样生长的机器人

[2019-11-09]  麻省理工学院开发了一种新型机器人,这种机器人可以本质上自我延伸,其生长方式与植物幼苗向上生长的方式惊人相似。值得注意的是,研究人员 ...

7种常见的机器人焊接类型
7种常见的机器人焊接类型

[2017-12-17]  机器人焊接是工业领域最常见的机器人应用之一,近几十年来主要由汽车行业驱动。机器人焊接在完成大批量,重复性的焊接任务时效率最高。...

智能机器人困惑的时候知道该问什么问题
智能机器人困惑的时候知道该问什么问题

[2017-03-20]   照片:Nick Dentamaro 布朗大学 上周,我们提到了麻省理工学院的一些研究,即通过链接人的大脑来帮助机器人在他们将要犯错误的时 ...

集群机器人领域最新研究:一种用于探测未知环境的微型无人机群
集群机器人领域最新研究:一种用于探测未知环境的微型无人机群

[2019-10-26]  (图:无人机扩散至不同方向来探索环境。当一个无人机注意到另一个无人机在它的首选方向,它将试图飞到另一个方向。若首选方向冲突,低优先 ...

[2017-03-21]  虽然有很多关于机器人取代工人的担心,但哈佛经济学家James Bessen的论文指出,在过去的67年里机器人仅仅淘汰掉人类工作中的一个。在1950 ...

受大脑控制的机器人
受大脑控制的机器人

[2017-03-21]   想让机器人做我们想做的,首先,他得全面地了解我们。通常,这就意味着人类需要要付出更多。比如,教机器人复杂的人类语言或者把一项任务 ...

Crossbar将电阻式RAM推入嵌入式AI
Crossbar将电阻式RAM推入嵌入式AI

[2018-05-17]  电阻RAM技术开发商Crossbar表示,它已与航空航天芯片制造商Microsemi达成协议,允许后者在未来的芯片中嵌入Crossbar的非易失性存储器。此举是在先进制造业节点的领先代工厂选......

本周栏目热点

机器人离线编程误差来源分析及消除办法

[2018-01-02]  随着机器人应用领域越来越广,传统的示教编程这种编程手段有些场合变得效率非常低下,于是离线编程应运而生,并且应用越来越普及。初用离线编程的朋友,总会被最后生...

全面了解机器人的精度

[2018-05-07]  1 绝对精度是啥玩意? 这个软件能否后刷进机器人系统?关于第二个问题,近期有不少客户询问本助手,这个软件可以后刷到系统里卖面吗?可以 ...

使用Azure Bot创建一个智能聊天机器人|附源代码

[2018-01-09]  首先,需要在Azure门户上创建一个帐户。只有这样,我们才能在云环境中托管应用程序。在左侧菜单上单击New,它将打开Azure Marketplace,在那里我们可以看到服务列表。点击AI +认知服务...

机器人如何赢得人类信任?普渡大学研究小组正在探索

[2018-12-15]  该测试使研究人员能够识别与智能系统中人类信任相关的心理生理特征,并相应地建立信任传感器模型。假设信任水平在可靠的试验中很高,在错误的试验中较低,使用从581名在线参与......

移动机器人的视觉算法解析

[2018-12-03]  如果对移动机器人视觉算法进行拆解,你就会发现获取物体深度信息、定位导航以及壁障等都是基于不同的视觉算法,本文就带大家聊一聊几种不同但又必不可少的视觉算法组成。...