爱吧机器人网 » 技术 > 模式识别 > 正文

人脸识别妙用:老板来了就自动切换桌面(含源码)

本文由 伯乐在线 - Ivyw 翻译,黄利民 校稿。未经许可,禁止转载!

简介

当你工作的时候,肯定会浏览一些与工作无关的东西,别说你没有过。

这时被老板发现就太尴尬了。当然,我也可以马上切换桌面,但这种举动太可疑了,而且有的时候我根本没注意到老板来了。为了表现得不是那么刻意,我做了个人脸识别程序,老板过来的时候自动隐藏桌面内容。

具体来说,我用 Keras 来实现面部识别的神经网络,用网络摄像头来判断他是否正在接近,然后切换画面。

任务

这个程序的目的是在发现老板接近时自动切换电脑桌面。

场景如下:

老板和我的座位之间隔着 6、7 米,他离开座位后大概 4、5 秒钟到达我的工位。因此必须在这个时间内切换好桌面,时间紧迫!

策略

可能你们会有很多办法,以下是我的个人对策。

首先,让电脑用深度学习的技术记住老板的脸;然后在我的工位安装一个网络摄像头,一旦捕捉到老板的脸就迅速切换桌面。我认为这是个很完美的策略,姑且称它为 Boss Sensor(老板识别器)吧。

系统架构

Boss Sensor 的系统架构如下所示。

  • 网络摄像头捕捉实时画面。
  • 学习模型对捕捉画面的面部进行检测和识别。
  • 识别出老板的面部后,切换桌面。

这个过程用到了如下技术:

  • 捕捉面部画面
  • 面部识别
  • 切换桌面

让我们一步一步分解一下。

捕捉面部画面

首先,用网络摄像头捕捉画面。

我用的是 BUFFALO BSW20KM11BK

你也可以用电脑软件自带的摄像头,但是考虑到接下来的步骤,最好是可以直接获得图像。由于接下来需要进行面部识别,所以需要对图像进行剪裁。我用 Python 和 OpenCV 获取面部图像。这是代码:

脸部图像比预期的更清晰。

面部识别

接下来,我们用机器学习来确保电脑可以识别出老板的脸。
这个过程需要分三步:

  1. 图像收集
  2. 图像预处理
  3. 构建机器学习模型

让我们一步一步分解一下。

图像收集

首先,

  • 从 Google 搜索图像
  • 从 Facebook 收集图像
  • 拍摄视频

最开始,我试着从网页搜索和 Facebook 收集图像,但数量远远不够。后来我拍摄了一段视频并把视频分解成无数个图像。

图像预处理

我收集到了足够多的图片,但是里面除去面部还有很多无关的部分,所以学习模型无法准确识别。我们把面部单独剪裁出来即可。

我主要使用 ImageMagick 进行提取。通过 ImageMagick 切割来获得面部图像。

然后我收集到了如下的面部图像:

可能我是世界上收藏老板照片最多的人,估计比他爸妈还要多。

接下来构建学习模型。

构建机器学习模型

我用 Keras 来搭建卷积神经网络(CNN),CNN 可以用来进行训练。Keras 的后端使用了 TensorFlow。如果你只需要识别面部,可以调用 Web API 进行图像识别,如 Cognitive Services 中的 Computer Vision API,但是考虑到实时性,我决定自己编写。

以下是网络的架构。Keras 可以很方便地展示出架构。

这是代码:

现在,如果老板出现在摄像机镜头里就可以被识别出来了。

切换桌面

当学习模型识别出老板在接近后,就需要切换桌面了。我选择了下面这张图像来假装我在工作。

选择这样的图片是因为我是个程序员。

我展示的仅仅是一张图片。

我希望图片可以全屏展示,所以使用了 PyQt,代码如下:

万事俱备了。

成品

把上面的技术整合起来就大功告成了,我已经试验过了。

“老板离开座位后向我靠近。”

“OpenCV 检测到了老板的面部并把信息传送给学习模型。”

“确定是老板后迅速切换桌面!ヽ(‘ ∇‘ )ノ ワーイ”

源代码

Boss Sensor 的源代码下载链接如下:

  • BossSensor:https://github.com/Hironsan/BossSensor

记得赞我哦m(_ _)m

结论

这一次,我把 Web 相机的实时图像采集和 Keras 的面部识别结合起来,成功地识别老板并隐藏桌面。

目前,我用 OpenCV 进行面部检测,但由于 OpenCV 中面部检测的准确性似乎不太好,我想尝试使用 Dlib 来提高准确性。另外,我还想尝试一下自己的面部检测模型。

由于对从网络摄像机获取的图像的识别精度不太好,我还会做些改进。



上一篇:人脸识别锁pk指纹锁,谁更胜一筹?
下一篇:人脸识别专家王国田:到底什么是人工智能、机器学习和机器视觉
精选推荐
机器人iCub作为嵌入式AI的标准机器人研究平台的重要性
机器人iCub作为嵌入式AI的标准机器人研究平台的重要性

[2017-12-24]  机器人的研究在过去10年中得益于一个具有嵌入式人工智能(AI)的标准化开源平台——人形机器人iCub。iCub最初在意大利被创建,如今在欧洲、美国、韩国、新加坡和日本的实验室......

美国喷气推进实验室的AI驱动无人机挑战人类飞行员
美国喷气推进实验室的AI驱动无人机挑战人类飞行员

[2017-12-08]  随着无人机及其组件越来越小,效率越来越高,功能越来越强大,我们已经看到越来越多的研究开始让无人机自主飞行在半结构化的环境中,而不依赖于外部定位。 宾夕法尼亚大学在......

这些人型机器人是如此真实,你的肉眼几乎无法区分
这些人型机器人是如此真实,你的肉眼几乎无法区分

[2017-09-03]   我们生活在一个区分现实与幻想变得越来越困难的世界。由于机器人技术的进步,创造人工的人类正在逐渐接近完美的最终目标。我们现在看到的机器人不再只是一块发光二极管,......

新型轻便机器人套装重5kg,辅助跑步和步行
新型轻便机器人套装重5kg,辅助跑步和步行

[2019-10-23]  虽然步行对大多数人来说似乎不是负担,但对有些人来说,这项简单的运动往往会让人感到筋疲力尽。比如手术或中风后恢复的患者、帕金森氏症患 ...

7种常见的机器人焊接类型
7种常见的机器人焊接类型

[2017-12-17]  机器人焊接是工业领域最常见的机器人应用之一,近几十年来主要由汽车行业驱动。机器人焊接在完成大批量,重复性的焊接任务时效率最高。...

谷歌宣布搜索算法重大升级,用BERT模型理解用户搜索意图
谷歌宣布搜索算法重大升级,用BERT模型理解用户搜索意图

[2019-10-26]  谷歌刚刚宣布,其搜索引擎的核心算法正在进行一项重大升级,这项升级可能会改变10%的搜索结果排序。此项升级应用了自然语言处理技术(BERT ...

集群机器人领域最新研究:一种用于探测未知环境的微型无人机群
集群机器人领域最新研究:一种用于探测未知环境的微型无人机群

[2019-10-26]  (图:无人机扩散至不同方向来探索环境。当一个无人机注意到另一个无人机在它的首选方向,它将试图飞到另一个方向。若首选方向冲突,低优先 ...

麻省理工最新机器人“装配工”未来可建造太空基地
麻省理工最新机器人“装配工”未来可建造太空基地

[2019-10-17]  两个机器人原型把一系列小单元组装成大结构体麻省理工学院科研人员最近提出一种新型机器人技术,即一种小型机器人系统,能够自主地用统一规 ...

本周栏目热点

生物识别技术那么多,为啥偏偏“刷脸”火了

[1970-01-01]   你走到一家自助银行前,摄像头通过刷脸,自动识别你的身份为你开门;你站到ATM机前输入密码,再在摄像 ...

从原理入手,解析基于DSP的汉字语音识别系统的实现方式

[1970-01-01]   语音识别是机器通过识别和理解过程把语音信号转变为相应的文本文件或命令的高技术。作为专门的研究领域 ...

新剪刀手识别技术 虽然现在还不是很准确-模式识别

[2016-03-11]   在几年前的时候,指纹识别看上去还是一项非常高端的技术。的确,这可以让我们在工作和生活当中的很多事 ...

谷歌为何力推虹膜技术 分析其背后的价值链条-模式识别

[2015-12-11]   指纹识别、人脸识别技术正在趋于成熟,也正在被应用到更丰富的场景,逐渐改变我们生活的方方面面。但在 ...

宝马联合三星与松下 研发智能语音识别系统

[2015-12-28]   据美国媒体Autoevolution12月22日报道,宝马、三星和松下三家公司近日与语音识别公司Nuance合作开发新 ...