爱吧机器人网 » 技术 > 神经网络 > 正文

实战深度强化学习DQN-理论和实践

作者:石晓文   中国人民大学信息学院在读研究生
个人公众号:小小挖掘机(ID:wAIsjwj)


1、Q-learning回顾

Q-learning 的 算法过程如下图所示:

在Q-learning中,我们维护一张Q值表,表的维数为:状态数S * 动作数A,表中每个数代表在当前状态S下可以采用动作A可以获得的未来收益的折现和。我们不断的迭代我们的Q值表使其最终收敛,然后根据Q值表我们就可以在每个状态下选取一个最优策略。

Q值表的更新公式为:


公式中,Q(S,A) 我们可以称做Q估计值,即我们当前估计的Q值,而:



称为Q-target,即我们使用贝尔曼方程加贪心策略认为实际应该得到的奖励,我们的目标就是使我们的Q值不断的接近Q-target值。

2、深度Q网络(Deep - Q - Network)

2.1 DQN简介

为什么会出现DQN呢

在普通的Q-learning中,当状态和动作空间是离散且维数不高时可使用Q-Table储存每个状态动作对的Q值,而当状态和动作空间是高维连续时,使用Q-Table不现实。

两篇DQN奠基之作

[1]Playing Atari with Deep Reinforcement Learning
[2]Human-level control through deep reinforcement learning

如何将原始的Q-learning转换成深度学习问题

将Q-Table的更新问题变成一个函数拟合问题,相近的状态得到相近的输出动作。如下式,通过更新参数 θ 使Q函数逼近最优Q值 。因此,DQN就是要设计一个神经网络结构,通过函数来拟合Q值,即:

2.2 DL和RL结合带来的问题

1、DL需要大量带标签的样本进行监督学习;RL只有reward返回值,而且伴随着噪声,延迟(过了几十毫秒才返回),稀疏(很多State的reward是0)等问题;
2、DL的样本独立;RL前后state状态相关;
3、DL目标分布固定;RL的分布一直变化,比如你玩一个游戏,一个关卡和下一个关卡的状态分布是不同的,所以训练好了前一个关卡,下一个关卡又要重新训练;
4、过往的研究表明,使用非线性网络表示值函数时出现不稳定等问题。

2.3 DQN解决问题方法

那么DQN是如何解决上述问题的呢?

1、通过Q-Learning使用reward来构造标签(对应问题1)
2、通过experience replay(经验池)的方法来解决相关性及非静态分布问题(对应问题2、3)
3、使用一个神经网络产生当前Q值,使用另外一个神经网络产生Target Q值(对应问题4)

构造标签

对于函数优化问题,监督学习的一般方法是先确定Loss Function,然后求梯度,使用随机梯度下降等方法更新参数。DQN则基于Q-Learning来确定Loss Function。我们想要使q-target值和q-eval值相差越小越好。DQN中的损失函数是:

这里yi是根据上一个迭代周期或者说target-net网络的参数计算出的q-target值,跟当前网络结构中的参数无关,yi的计算如下:


这样,整个目标函数就可以通过随机梯度下降方法来进行优化:


经验回放

经验池的功能主要是解决相关性及非静态分布问题。具体做法是把每个时间步agent与环境交互得到的转移样本 (st,at,rt,st+1) 储存到回放记忆单元,要训练时就随机拿出一些(minibatch)来训练。(其实就是将游戏的过程打成碎片存储,训练时随机抽取就避免了相关性问题)

双网络结构

在Nature 2015版本的DQN中提出了这个改进,使用另一个网络(这里称为target_net)产生Target Q值。具体地,Q(s,a;θi) 表示当前网络eval_net的输出,用来评估当前状态动作对的值函数;Q(s,a;θ−i) 表示target_net的输出,代入上面求 TargetQ 值的公式中得到目标Q值。根据上面的Loss Function更新eval_net的参数,每经过N轮迭代,将MainNet的参数复制给target_net。

引入target_net后,再一段时间里目标Q值使保持不变的,一定程度降低了当前Q值和目标Q值的相关性,提高了算法稳定性。

2.4 DQN算法流程

NIPS 2013版


Nature 2015版


可以看到,两版的DQN都使用了经验池,而2015版的DQN增加了target-net,提高了算法稳定性。

3、DQN实现DEMO

找了很多DQN的例子,有原版的实现Atari的,也有Flappy Bird的,但是最简单的还是莫烦大神的Demo,github地址是:https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow。

在介绍整个Demo前,我们介绍两种DQN的实现方式,一种是将s和a输入到网络,得到q值,另一种是只将s输入到网络,输出为s和每个a结合的q值。这里莫烦大神的代码采取了后一种方式。

如果你对DQN的原理有比较深刻的认识,那么读莫烦大神的代码也并不是十分困难。这里我们想要实现的效果类似于寻宝。


其中,红色的方块代表寻宝人,黑色的方块代表陷阱,黄色的方块代表宝藏,我们的目标就是让寻宝人找到最终的宝藏。

这里,我们的状态可以用横纵坐标表示,而动作有上下左右四个动作。使用tkinter来做这样一个动画效果。宝藏的奖励是1,陷阱的奖励是-1,而其他时候的奖励都为0。

接下来,我们重点看一下我们DQN相关的代码。

定义相关输入

这了,我们用s代表当前状态,用a代表当前状态下采取的动作,r代表获得的奖励,s_代表转移后的状态。
self.s = tf.placeholder(tf.float32,[None,self.n_features],name='s')
self.s_ = tf.placeholder(tf.float32,[None,self.n_features],name='s_')
self.r = tf.placeholder(tf.float32,[None,],name='r')
self.a = tf.placeholder(tf.int32,[None,],name='a')

经验池

   def store_transition(self,s,a,r,s_):
       if not hasattr(self, 'memory_counter'):
           self.memory_counter = 0
       # hstack:Stack arrays in sequence horizontally
       transition = np.hstack((s,[a,r],s_))
       index = self.memory_counter % self.memory_size
       self.memory[index,:] = transition
       self.memory_counter += 1

双网络结构

target_net和eval_net的网络结构必须保持一致,这里我们使用的是两层全链接的神经网络,值得注意的一点是对于eval_net来说,网络的输入是当前的状态s,而对target_net网络来说,网络的输入是下一个状态s_,因为target_net的输出要根据贝尔曼公式计算q-target值,即


代码如下:

w_initializer, b_initializer = tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1)

# ------------------ build evaluate_net ------------------
with tf.variable_scope('eval_net'):
   e1 = tf.layers.dense(self.s,20,tf.nn.relu,kernel_initializer=w_initializer,
                        bias_initializer=b_initializer,name='e1'
                        )

   self.q_eval = tf.layers.dense(e1,self.n_actions,kernel_initializer=w_initializer,
                                 bias_initializer=b_initializer,name='q')

# ------------------ build target_net ------------------

with tf.variable_scope('target_net'):
   t1 = tf.layers.dense(self.s_, 20, tf.nn.relu, kernel_initializer=w_initializer,
                        bias_initializer=b_initializer, name='t1')
   self.q_next = tf.layers.dense(t1, self.n_actions, kernel_initializer=w_initializer,
                                 bias_initializer=b_initializer, name='t2')

每隔一定的步数,我们就要将target_net中的参数复制到eval_net中:

t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope='target_net')
e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope='eval_net')

with tf.variable_scope('soft_replacement'):
     self.target_replace_op = [tf.assign(t,e) for t,e in zip(t_params,e_params)]

计算损失并优化

首先,对于eval_net来说,我们只要得到当前的网络输出即可,但是我们定义的网络输出是四个动作对应的q-eval值,我们要根据实际的a来选择对应的q-eval值,这一部分的代码如下:

with tf.variable_scope('q_eval'):
   # tf.stack
   #a = tf.constant([1,2,3])
   # b = tf.constant([4,5,6])
   # c = tf.stack([a,b],axis=1)
   # [[1 4]
   #  [2 5]
   # [3 6]]
   a_indices = tf.stack([tf.range(tf.shape(self.a)[0], dtype=tf.int32), self.a], axis=1)
   # 用indices从张量params得到新张量
   # indices = [[0, 0], [1, 1]]
   # params = [['a', 'b'], ['c', 'd']]
   # output = ['a', 'd']
   # 这里self.q_eval是batch * action_number,a_indices是batch * 1,也就是说选择当前估计每个动作的Q值
   self.q_eval_wrt_a = tf.gather_nd(params=self.q_eval, indices=a_indices)

中间有几个函数不太了解的,上面都有详细的注释,如果还不是很理解的话,大家可以百度或者阅读相应函数的源码。
对于target_net网络来说,我们要根据下面的式子来计算q-target值:


第一部分的R我们是已经得到了的,剩下的就是根据贪心策略选择四个输出中最大的一个即可:

with tf.variable_scope('q_target'):
   q_target = self.r + self.gamma * tf.reduce_max(self.q_next,axis=1,name='Qmax_s_')
   # 一个节点被 stop之后,这个节点上的梯度,就无法再向前BP了
   self.q_target = tf.stop_gradient(q_target)

接下来,我们就可以定义我们的损失函数并选择优化器进行优化:

with tf.variable_scope('loss'):
   self.loss = tf.reduce_mean(tf.squared_difference(self.q_target,self.q_eval_wrt_a,name='TD_error'))

with tf.variable_scope('train'):
   self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)

网络的训练

每隔一定的步数,我们就要将eval_net中的参数复制到target_net中,同时我们要从经验池中选择batch大小的数据输入到网络中进行训练。

def learn(self):
   if self.learn_step_counter % self.replace_target_iter == 0:
       self.sess.run(self.target_replace_op)
       print('\ntarget_params_replaced\n')

   if self.memory_counter > self.memory_size:
       sample_index = np.random.choice(self.memory_size,size=self.batch_size)
   else:
       sample_index = np.random.choice(self.memory_counter,size = self.batch_size)

   batch_memory = self.memory[sample_index,:]

   _,cost = self.sess.run(
       [self._train_op,self.loss],
       feed_dict={
           self.s:batch_memory[:,:self.n_features],
           self.a:batch_memory[:,self.n_features],
           self.r:batch_memory[:,self.n_features+1],
           self.s_:batch_memory[:,-self.n_features:]
       }
   )

剩下的代码就不介绍啦,大家不妨去github上fork大神的代码,跟着进行练习,相信会对DQN的原理有一个更进一步的认识。

4、参考文献

1、深度强化学习——DQN:https://blog.csdn.net/u013236946/article/details/72871858
2、莫烦的github:https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow


上一篇:CNN经典论文研读之VGG网络及其tensorflow实现
下一篇:计算机视觉领域前沿一览
精选推荐
从AI中窥探人性
从AI中窥探人性

[2018-01-03]  人们对人造智能的恐惧早已成为科幻书籍和电影的极好题材。但现在,一些同样的担忧开始影响关于现实世界AI技术的政策讨论。如果这样的担忧演变成为一种技术恐慌...

Waymo:人性和行为心理学才是无人驾驶最大的挑战
Waymo:人性和行为心理学才是无人驾驶最大的挑战

[2019-11-03]  自动驾驶汽车作为AI领域内最大的挑战之一,谷歌致力于其研发已有十余载,现在他们逐渐意识到,最困难的是如何让人们享受驾驶的乐趣。这是一 ...

苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展
苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展

[2017-12-11]  苹果隐秘的自动驾驶汽车项目多年来一直在转移焦点,但今年似乎正在加速。 4月份,公司获得了在加利福尼亚州进行自动驾驶汽车测试的许可证,而在6月份,苹果公司首席执行官库......

新型轻便机器人套装重5kg,辅助跑步和步行
新型轻便机器人套装重5kg,辅助跑步和步行

[2019-10-23]  虽然步行对大多数人来说似乎不是负担,但对有些人来说,这项简单的运动往往会让人感到筋疲力尽。比如手术或中风后恢复的患者、帕金森氏症患 ...

搭载人工智能的太空机器人CIMON 2乘SpaceX抵达国际空间站
搭载人工智能的太空机器人CIMON 2乘SpaceX抵达国际空间站

[2019-12-09]  12月5日,搭载人工智能的太空机器人西蒙2号(CIMON 2)乘坐SpaceX火箭Dragon货运舱,从佛罗里达州卡纳维拉尔角空军基地升空,前往国际空间 ...

美国喷气推进实验室的AI驱动无人机挑战人类飞行员
美国喷气推进实验室的AI驱动无人机挑战人类飞行员

[2017-12-08]  随着无人机及其组件越来越小,效率越来越高,功能越来越强大,我们已经看到越来越多的研究开始让无人机自主飞行在半结构化的环境中,而不依赖于外部定位。 宾夕法尼亚大学在......

人工智能准确预测患者一年内的死亡风险,原理却无法解释
人工智能准确预测患者一年内的死亡风险,原理却无法解释

[2019-11-13]  图片来自BURGER PHANIE SCIENCE PHOTO LIBRARY美国最新研究显示,人工智能通过查看心脏测试结果,以高达85%以上的准确率预测了一个人在一 ...

2018年企业数字化转型的五大趋势
2018年企业数字化转型的五大趋势

[2017-12-16]  据2016年哈佛商学院研究表明,选择进行数字化转型的企业在3年内表现出了55%的平均毛利润提升,相比之下其他企业毛利润同期降低了37%。数字化转型企业的领头羊,也曾是收入处于......

本周栏目热点

飞桨火力全开,重磅上线3D模型:PointNet++、PointRCNN!

[2020-03-26]  11 年前的「阿凡达」让少年的我们第一次戴上 3D 眼镜,声势浩大的瀑布奔流而下,星罗棋布飘浮在空中的群山,无一不体现着对生命的敬意, ...

从基础概念到数学公式,这是一份520页的机器学习笔记(图文并茂)

[2018-06-19]  近日,来自SAP(全球第一大商业软件公司)的梁劲(Jim Liang)公开了自己所写的一份 520 页的学习教程(英文版),详细、明了地介绍了机器学习中的相关概念、数学知识和各......

50行代码玩转生成对抗网络GAN模型!(附源码)

[2018-07-30]  本文为大家介绍了生成对抗网络(Generate Adversarial Network,GAN),以最直白的语言来讲解它,最后实现一个简单的 GAN 程序来帮助大家加深理解。...

神经网络和模糊逻辑的工作流

[2016-11-20]   行业观察 神经网络 和模糊逻辑的工作流 null 来源:神州数码erp 发布时间: 2009-10-14 9:06:01 关键词: 工作流,协同,B2B,OA  以下 ...

深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...