爱吧机器人网 » 技术 > 神经网络 > 正文

MAERI:可重构互联架构赋能DNN加速器灵活数据流映射

一、论文题目
 
MAERI:可重构互联架构赋能DNN加速器灵活数据流映射

二、摘要

在计算机视觉和语音识别方面,深度神经网络(DNN)已经被广泛认为是一种非常有前景的解决方案,并且正在成为众多其他人工智能应用领域的计算基础。然而,这些算法的计算复杂度和对高能效的需求导致了对专用硬件加速器研究的激增。为了减少访问DRAM的延迟和功率消耗,大多数的DNN加速器本质上是以空间换时间,通过扩展数百个处理元件(PE)并行操作并且彼此之间直接通信。

MAERI:可重构互联架构赋能DNN加速器灵活数据流映射
DNN的发展是日新月异的,并且在最近的网络结构中,大多同时包括卷积层、递归层、池化层和全连接层等,且具有不同的输入大小和滤波器尺寸。它们可能是稠密的或稀疏的。它们还可以以多种方式(层内和跨层)进行分块,以获得数据的重用(权重和中间输出)。这些计算特征都可能导致不同的加速器数据流模式。

MAERI:可重构互联架构赋能DNN加速器灵活数据流映射
不幸的是,大多数的DNN加速器仅支持固定的数据流模式,因为它们对PE和片上网络(NoC)进行了精细的协同设计,以期达到最优的性能功耗比。实际上,它们中的大多数仅针对卷积层内的数据流进行了优化。这使得在结构上有效地映射任意数据流变得极具挑战性,并且可能导致可用计算资源的利用率极低。

MAERI:可重构互联架构赋能DNN加速器灵活数据流映射
DNN加速器需要可编程以实现大规模部署。要使它们可编程,它们需要在内部进行重构,以支持可以映射到加速器上的各种数据流模式。为了满足这一需求,我们提供了MAERI,它是一个DNN加速器,内置一组模块化和可配置的构建块,可以通过适当配置互联架构轻松支持无数DNN分区和映射。 MAERI使用刚性NoC结构,在基准测试上的多个数据流映射中提供了8-459%的资源利用率提升。

MAERI:可重构互联架构赋能DNN加速器灵活数据流映射
(MAERI的不同功能模块)

MAERI:可重构互联架构赋能DNN加速器灵活数据流映射
(不同架构下面积和功耗对比)

MAERI:可重构互联架构赋能DNN加速器灵活数据流映射
(3x3x3kernel和5x5x3input的映射实例)



Abstract

Deep neural networks (DNN) have demonstrated highly promising results across computer vision and speech recognition, and are becoming foundational for ubiquitous AI. The computational complexity of these algorithms and a need for high energy-efficiency has led to a surge in research on hardware accelerators. To reduce the latency and energy costs of accessing DRAM, most DNN accelerators are spatial in nature, with hundreds of processing elements (PE) operating in parallel and communicating with each other directly. DNNs are evolving at a rapid rate, and it is common to have convolution, recurrent, pooling, and fully-connected layers with varying input and filter sizes in the most recent topologies.They may be dense or sparse. They can also be partitioned in myriad ways (within and across layers) to exploit data reuse (weights and intermediate outputs). All of the above can lead to different dataflow patterns within the accelerator substrate. Unfortunately, most DNN accelerators support only fixed dataflow patterns internally as they perform a careful co-design of the PEs and the network-on-chip (NoC). In fact, the majority of them are only optimized for traffic within a convolutional layer. This makes it challenging to map arbitrary dataflows on the fabric efficiently, and can lead to underutilization of the available compute resources. DNN accelerators need to be programmable to enable mass deployment. For them to be programmable, they need to be configurable internally to support the various dataflow patterns that could be mapped over them. To address this need, we present MAERI, which is a DNN accelerator built with a set of modular and configurable building blocks that can easily support myriad DNN partitions and mappings by appropriately configuring tiny switches. MAERI provides 8-459% better utilization across multiple dataflow mappings over baselines with rigid NoC fabrics.



如果你对本文感兴趣,想要下载完整文章进行阅读,可以关注【AI食堂】公众号(AIStation)。




上一篇:用人工智能神经网络给黑白照片上色 复现记忆中的旧时光
下一篇:可编辑神经网络,有望简化深度学习?
精选推荐
机器人工程师具体都做什么?
机器人工程师具体都做什么?

[2017-12-08]  机器人工程师是幕后设计师,负责创建机器人和机器人系统,能够执行人类无法完成或不愿意完成的任务。 通过他们的创造,机器人工程师帮助工作更安全,更轻松,更高效,特别是......

智能机器人困惑的时候知道该问什么问题
智能机器人困惑的时候知道该问什么问题

[2017-03-20]   照片:Nick Dentamaro 布朗大学 上周,我们提到了麻省理工学院的一些研究,即通过链接人的大脑来帮助机器人在他们将要犯错误的时 ...

MIT研制出可以像植物一样生长的机器人
MIT研制出可以像植物一样生长的机器人

[2019-11-09]  麻省理工学院开发了一种新型机器人,这种机器人可以本质上自我延伸,其生长方式与植物幼苗向上生长的方式惊人相似。值得注意的是,研究人员 ...

2022年全球工业机器人市场将达到790亿美元
2022年全球工业机器人市场将达到790亿美元

[2017-09-04]  预计到 2022年, 全球工业机器人市场将达到790亿美元, 并在预测期内登记11 5% 的复合年增长率。随着发展中国家中小型企业需求的不断增长, 采用自动化技术以确保生产质量......

MIT最新“人机”互连系统 让双腿机器人复制人体技能
MIT最新“人机”互连系统 让双腿机器人复制人体技能

[2019-11-01]  MIT的小爱马仕想借用你的大脑 ,图片来自: João Ramos爱吧机器人网消息,麻省理工学院(MIT)的研究人员展示了一种新型遥操作系 ...

苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展
苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展

[2017-12-11]  苹果隐秘的自动驾驶汽车项目多年来一直在转移焦点,但今年似乎正在加速。 4月份,公司获得了在加利福尼亚州进行自动驾驶汽车测试的许可证,而在6月份,苹果公司首席执行官库......

哈佛大学《自然》发表新驱动技术,让飞行机器人悬停且不受损伤
哈佛大学《自然》发表新驱动技术,让飞行机器人悬停且不受损伤

[2019-11-06]  哈佛大学研究人员发表在《自然》杂志上的一项最新研究,他们开发了一种由柔软的人造肌肉驱动的机器人蜜蜂(RoboBee),这种机器人在撞墙、 ...

[2018-01-26]  纽约时报的报道,德国的研究人员已经开发出一种长约七分之一英寸的机器人,首先看起来不过是一小块橡皮条。然后它开始移动。机器人走路,跳跃,爬行,滚动和游泳。它甚至爬出......

本周栏目热点

飞桨火力全开,重磅上线3D模型:PointNet++、PointRCNN!

[2020-03-26]  11 年前的「阿凡达」让少年的我们第一次戴上 3D 眼镜,声势浩大的瀑布奔流而下,星罗棋布飘浮在空中的群山,无一不体现着对生命的敬意, ...

从基础概念到数学公式,这是一份520页的机器学习笔记(图文并茂)

[2018-06-19]  近日,来自SAP(全球第一大商业软件公司)的梁劲(Jim Liang)公开了自己所写的一份 520 页的学习教程(英文版),详细、明了地介绍了机器学习中的相关概念、数学知识和各......

50行代码玩转生成对抗网络GAN模型!(附源码)

[2018-07-30]  本文为大家介绍了生成对抗网络(Generate Adversarial Network,GAN),以最直白的语言来讲解它,最后实现一个简单的 GAN 程序来帮助大家加深理解。...

神经网络和模糊逻辑的工作流

[2016-11-20]   行业观察 神经网络 和模糊逻辑的工作流 null 来源:神州数码erp 发布时间: 2009-10-14 9:06:01 关键词: 工作流,协同,B2B,OA  以下 ...

深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...