爱吧机器人网 » 技术 > 神经网络 > 正文

人工神经网络matlab源程序代码

人工 神经网络 matlab 源程序 代码

%产生指定类别的样本点,并在图中绘出
X = [0 1; 0 1]; % 限制类中心的范围
clusters = 5; % 指定类别数目
points = 10; % 指定每一类的点的数目
std_dev = 0.05; % 每一类的标准差
P = nngenc(X,clusters,points,std_dev);
plot(P(1,:),P(2,:),'+r');
title('输入样本向量');
xlabel('p(1)');
ylabel('p(2)');
%建立网络
net=newc([0 1;0 1],5,0.1); %设置神经元数目为5
%得到网络权值,并在图上绘出
figure;
plot(P(1,:),P(2,:),'+r');
w=net.iw{1}
hold on;
plot(w(:,1),w(:,2),'ob');
hold off;
title('输入样本向量及初始权值');
xlabel('p(1)');
ylabel('p(2)');
figure;
plot(P(1,:),P(2,:),'+r');
hold on;
%训练网络
net.trainParam.epochs=7;
net=init(net);
net=train(net,P);
%得到训练后的网络权值,并在图上绘出
w=net.iw{1}
plot(w(:,1),w(:,2),'ob');
hold off;
title('输入样本向量及更新后的权值');
xlabel('p(1)');
ylabel('p(2)');
a=0;
p = [0.6 ;0.8];
a=sim(net,p)
-------------------

example8_2

%随机生成1000个二维向量,作为样本,并绘出其分布
P = rands(2,1000);
plot(P(1,:),P(2,:),'+r')
title('初始随机样本点分布');
xlabel('P(1)');
ylabel('P(2)');
%建立网络,得到初始权值
net=newsom([0 1; 0 1],[5 6]);
w1_init=net.iw{1,1}
%绘出初始权值分布图
figure;
plotsom(w1_init,net.layers{1}.distances)
%分别对不同的步长,训练网络,绘出相应的权值分布图
for i=10:30:100
net.trainParam.epochs=i;
net=train(net,P);
figure;
plotsom(net.iw{1,1},net.layers{1}.distances)
end
%对于训练好的网络,选择特定的输入向量,得到网络的输出结果
p=[0.5;0.3];
a=0;
a = sim(net,p)
--------------------------

example8_3

%指定输入二维向量及其类别
P = [-3 -2 -2 0 0 0 0 +2 +2 +3;
0 +1 -1 +2 +1 -1 -2 +1 -1 0];
C = [1 1 1 2 2 2 2 1 1 1];
%将这些类别转换成学习向量量化网络使用的目标向量
T = ind2vec(C)
%用不同的颜色,绘出这些输入向量
plotvec(P,C),
title('输入二维向量');
xlabel('P(1)');
ylabel('P(2)');
%建立网络
net = newlvq(minmax(P),4,[.6 .4],0.1);
%在同一幅图上绘出输入向量及初始权重向量
figure;
plotvec(P,C)
hold on
W1=net.iw{1};
plot(W1(1,1),W1(1,2),'ow')
title('输入以及权重向量');
xlabel('P(1), W(1)');
ylabel('P(2), W(2)');
hold off;
%训练网络,并再次绘出权重向量
figure;
plotvec(P,C);
hold on;
net.trainParam.epochs=150;
net.trainParam.show=Inf;
net=train(net,P,T);
plotvec(net.iw{1}',vec2ind(net.lw{2}),'o');
%对于一个特定的点,得到网络的输出
p = [0.8; 0.3];
a = vec2ind(sim(net,p))


上一篇:谷歌神经翻译又有新进展 基于单一模型无须训练
下一篇:改进的BP神经网络算法(C语言源码)
精选推荐
机器人iCub作为嵌入式AI的标准机器人研究平台的重要性
机器人iCub作为嵌入式AI的标准机器人研究平台的重要性

[2017-12-24]  机器人的研究在过去10年中得益于一个具有嵌入式人工智能(AI)的标准化开源平台——人形机器人iCub。iCub最初在意大利被创建,如今在欧洲、美国、韩国、新加坡和日本的实验室......

人工智能准确预测患者一年内的死亡风险,原理却无法解释
人工智能准确预测患者一年内的死亡风险,原理却无法解释

[2019-11-13]  图片来自BURGER PHANIE SCIENCE PHOTO LIBRARY美国最新研究显示,人工智能通过查看心脏测试结果,以高达85%以上的准确率预测了一个人在一 ...

深度神经网络揭示了大脑喜欢看什么
深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...

亚马逊CEO杰夫·贝佐斯操控巨型有人驾驶机器人(巨型机甲)
亚马逊CEO杰夫·贝佐斯操控巨型有人驾驶机器人(巨型机甲)

[2017-03-21]  近日,亚马逊CEO杰夫·贝佐斯实现了每一个6岁儿童都会有的梦想,他控制了一个巨大的机甲机器人。据国外媒体Verge报道,前天(3月19日),贝 ...

改变保险市场的格局:无人机如何通过更快的估算、响应时间和利益交付来使消费者受益
改变保险市场的格局:无人机如何通过更快的估算、响应时间和利益交付来

[2018-12-08]  市场研究公司IHS Markit预测,到2020年,专业无人机市场将通过农业,能源和建筑等行业利用测量,制图,规划等技术实现77 1%的复合年增长率(CAGR)。与此同时,消费者无人......

麻省理工又秀神技:推出如魔法般跳跃的方块机器人集群
麻省理工又秀神技:推出如魔法般跳跃的方块机器人集群

[2019-10-31]  几天前,小编向大家介绍过麻省理工(MIT)研发的一种自组装机器人集群(点此阅览),它们可以用统一标准的小单元自动组装出各种大型结构。 ...

为未来战场创造更有效的机器人 美国陆军研究人工纳米马达
为未来战场创造更有效的机器人 美国陆军研究人工纳米马达

[2019-10-11]  为了使机器人在战斗中更有效、更多才多艺地成为士兵的战友,美国陆军研究人员正在执行一项任务,即研究肌肉分子生命功能的价值,以及复制过 ...

哈佛大学《自然》发表新驱动技术,让飞行机器人悬停且不受损伤
哈佛大学《自然》发表新驱动技术,让飞行机器人悬停且不受损伤

[2019-11-06]  哈佛大学研究人员发表在《自然》杂志上的一项最新研究,他们开发了一种由柔软的人造肌肉驱动的机器人蜜蜂(RoboBee),这种机器人在撞墙、 ...

本周栏目热点

飞桨火力全开,重磅上线3D模型:PointNet++、PointRCNN!

[2020-03-26]  11 年前的「阿凡达」让少年的我们第一次戴上 3D 眼镜,声势浩大的瀑布奔流而下,星罗棋布飘浮在空中的群山,无一不体现着对生命的敬意, ...

神经网络结构在命名实体识别(NER)中的应用

[2018-01-17]  近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展。作为NLP领域的基础任务—命名实体识别(Named Entity Recognition,NER)也不例外,神经网络结......

从基础概念到数学公式,这是一份520页的机器学习笔记(图文并茂)

[2018-06-19]  近日,来自SAP(全球第一大商业软件公司)的梁劲(Jim Liang)公开了自己所写的一份 520 页的学习教程(英文版),详细、明了地介绍了机器学习中的相关概念、数学知识和各......

50行代码玩转生成对抗网络GAN模型!(附源码)

[2018-07-30]  本文为大家介绍了生成对抗网络(Generate Adversarial Network,GAN),以最直白的语言来讲解它,最后实现一个简单的 GAN 程序来帮助大家加深理解。...

深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...