爱吧机器人网 » 技术 > 神经网络 > 正文

改进的BP神经网络算法(C语言源码)

#include "stdio.h"
#include "stdlib.h"
#include "time.h"
#include "math.h"
/*********************************************
inpoints 为输入神经元个数,可改变
outpoints为输出神经元个数
defaultpoints为隐层神经元个数
datagrough为样本数据个数
**********************************************

******以下数据定义可以修改*****/
#define A 0
#define a 1
#define b 1
#define c 1
#define ALFA 0.85
#define BETA 0.2 //学习率0~1
#define Total 20000
#define inpoints 9
#define outpoints 5
#define defaultpoints 28
#define datagrough 44
#define forecastdata 4

/**********定义所需变量********/
double InpointData[datagrough][inpoints],OutpointData[datagrough][outpoints]; /* 输入输出数据 */
double InpointData_MAX[inpoints],InpointData_MIN[inpoints]; /* 每个因素最 大数据 */
double OutpointData_MAX[outpoints],OutpointData_MIN[outpoints]; /* 每个因素最小数据 */
double w[defaultpoints][inpoints],limen[defaultpoints],v[outpoints][defaultpoints]; /* 连接权值、阈值 */
double dlta_w[defaultpoints][inpoints],dlta_limen[defaultpoints],dlta_v[outpoints][defaultpoints]; /* 连接权、阈值修正值 */
double defaultOutpoint[defaultpoints],Outpoint_dp[outpoints],Outpoint_ep[datagrough];
/**************************读数据文件******************************/
void ReadData()
{
FILE *fp1,*fp2;
int i,j;
if((fp1=fopen("D:\data\训练输入.txt","r"))==NULL)
{
printf("1can not open the filen");
exit(0);
}
for(i=0;i<datagrough;i++)
for(j=0;j<inpoints;j++)
fscanf(fp1,"%lf",&InpointData[i][j]);
fclose(fp1);

if((fp2=fopen("D:\data\训练输出.txt","r"))==NULL)
{
printf("2can not open the filen");
exit(0);
}
for(i=0;i<datagrough;i++)
for(j=0;j<outpoints;j++)
fscanf(fp2,"%lf",&OutpointData[i][j]);
fclose(fp2);
}
/*****************************************************/

/*****************************************归一化******************************************************/
void unitary()
{
int i,j;
int k=0;
for(j=0;j<inpoints;j++) //找出每列的最大、最小值存放在数组InpointData_MAX[j]、InpointData_MIN[j]中
{
InpointData_MAX[j]=InpointData[0][j];
InpointData_MIN[j]=InpointData[0][j];
for(i=0;i<datagrough;i++)
if(InpointData_MAX[j]<InpointData[i][j])
InpointData_MAX[j]=InpointData[i][j];
else if(InpointData_MIN[j]>InpointData[i][j])
InpointData_MIN[j]=InpointData[i][j];
}

for(j=0;j<outpoints;j++) //找出每列的最大、最小值存放在数组OutpointData_MAX[j]、OutpointData_MIN[j]中
{
OutpointData_MAX[j]=OutpointData[0][j];
OutpointData_MIN[j]=OutpointData[0][j];
for(i=0;i<datagrough;i++)
if(OutpointData_MAX[j]<OutpointData[i][j])
OutpointData_MAX[j]=OutpointData[i][j];
else if(OutpointData_MIN[j]>OutpointData[i][j])
OutpointData_MIN[j]=OutpointData[i][j];
}
/***************将数据归一处理,处理之后的数据全部在[0,1]之间*************************/
for(j=0;j<inpoints;j++)
for(i=0;i<datagrough;i++)
if(InpointData_MAX[j]==0)
InpointData[i][j]=0;
else
InpointData[i][j]=(InpointData[i][j]-InpointData_MIN[j]+A)/(InpointData_MAX[j]-InpointData_MIN[j]+A);

for(j=0;j<outpoints;j++)
for(i=0;i<datagrough;i++)
if(OutpointData_MAX[j]==0)
OutpointData[i][j]=0;
else
OutpointData[i][j]=(OutpointData[i][j]-OutpointData_MIN[j]+A)/(OutpointData_MAX[j]-OutpointData_MIN[j]+A);

}
/*****************************************************/

/*********************初始化,随机赋初值**************************/
void Initialization()
{
int i,j;
srand((unsigned)time(NULL)); //头文件名 #include <time.h>

for(i=0;i<defaultpoints;i++) //给输入层到隐层的连接权赋随机值LianJie_w[i][j],这些值在[0,1]
for(j=0;j<inpoints;j++)
{
w[i][j]=(rand()*2.0/RAND_MAX-1)/2;
dlta_w[i][j]=0;
}

for(i=0;i<defaultpoints;i++)
{
limen[i]=(rand()*2.0/RAND_MAX-1)/2;
dlta_limen[i]=0;
}

for(i=0;i<outpoints;i++) //给隐层到输出层的连接权赋初值
for(j=0;j<defaultpoints;j++)
{
v[i][j]=(rand()*2.0/RAND_MAX-1)/2;
dlta_v[i][j]=0;
}
}
/**********************求单样本的计算输出误差*******************************/
void out_sub1(int t)
{
int i,j;
double defaultInpoint[defaultpoints];
double Outpoint_y[outpoints];
Outpoint_ep[t]=0;
for(i=0;i<defaultpoints;i++)
{
double sum=0;
for(j=0;j<inpoints;j++)
sum+=w[i][j]*InpointData[t][j];
defaultInpoint[i]=sum+limen[i];
defaultOutpoint[i]=1/(a+b*exp(-1*c*defaultInpoint[i]));//求O[i]
}

for(j=0;j<outpoints;j++)//求Y[i]
{
Outpoint_y[j]=0;
for(i=0;i<defaultpoints;i++)
Outpoint_y[j]+=v[j][i]*defaultOutpoint[i];
Outpoint_dp[j]=OutpointData[t][j]-Outpoint_y[j];
Outpoint_ep[t]+=Outpoint_dp[j]*Outpoint_dp[j]/2;
}
}
/*****************************反算权值******************************************/
void out_sub2(int t)
{
int i,j,k;
double s;
for(i=0;i<defaultpoints;i++)
{
s=0;
for(j=0;j<outpoints;j++)
{
dlta_v[j][i]=ALFA*dlta_v[j][i]+BETA*Outpoint_dp[j]*defaultOutpoint[i]; //
s+=v[j][i]*Outpoint_dp[j];
v[j][i]+=dlta_v[j][i];
}
dlta_limen[i]=ALFA*dlta_limen[i]+BETA*defaultOutpoint[i]*(1-defaultOutpoint[i])*s;//
limen[i]+=dlta_limen[i];
for(k=0;k<inpoints;k++)
{
dlta_w[i][k]=ALFA*dlta_w[i][k]+BETA*defaultOutpoint[i]*(1-defaultOutpoint[i])*s*InpointData[t][k];//
w[i][k]=w[i][k]+dlta_w[i][k];
}
}
}
/*******************************************************/
void forecast()
{
int i,j,t,k=0;
double e,e1[forecastdata]={0}; //训练误差
double sss;
double InputData_x[forecastdata][inpoints],tp[forecastdata][outpoints];
double defInpoint,defOutpoint[defaultpoints],y[forecastdata][outpoints];//y[forecastdata][outpoints]为网络检验输出
FILE *fp1,*fp3;
if((fp1=fopen("D:\data\预测输入.txt","r"))==NULL) //检验数据输入
{
printf("3can not open the filen");
exit(0);
}
for(i=0;i<forecastdata;i++)
for(j=0;j<inpoints;j++)
fscanf(fp1,"%lf",&InputData_x[i][j]);
fclose(fp1);

if((fp3=fopen("D:\data\预测输出.txt","r"))==NULL) //实际检验结果输出
{
printf("31can not open the filen");
exit(0);
}
for(i=0;i<forecastdata;i++)
for(j=0;j<outpoints;j++)
fscanf(fp3,"%lf",&tp[i][j]);
fclose(fp3);

for(j=0;j<inpoints;j++) // 检验数据归一化
for(i=0;i<forecastdata;i++)
if(InpointData_MAX[j]==0)
InputData_x[i][j]=0;
else
InputData_x[i][j]=(InputData_x[i][j]-InpointData_MIN[j]+A)/(InpointData_MAX[j]-InpointData_MIN[j]+A);

for(j=0;j<outpoints;j++)
for(i=0;i<forecastdata;i++)
if(OutpointData_MAX[j]==0)
tp[i][j]=0;
else
tp[i][j]=(tp[i][j]-OutpointData_MIN[j]+A)/(OutpointData_MAX[j]-OutpointData_MIN[j]+A);

do
{
Initialization(); //初始化连接权值w[i][j],limen[i],v[k][i]
k=0;
do
{
e=0;
for(t=0;t<datagrough;t++)
{
out_sub1(t); //正向计算网络输出
out_sub2(t); //反向计算,修正权值
e+=Outpoint_ep[t]; //计算输出误差
}
k++;
}while((k<Total)&&(e>0.1));
sss=0; //中间参数
for(t=0;t<forecastdata;t++)
{
e1[t]=0;
for(i=0;i<defaultpoints;i++)
{
double sum=0;
for(j=0;j<inpoints;j++)
sum+=w[i][j]*InputData_x[t][j];
defInpoint=sum+limen[i];
defOutpoint[i]=1/(a+b*exp(-1*c*defInpoint));
}
for(j=0;j<outpoints;j++)
{
y[t][j]=0;
for(i=0;i<defaultpoints;i++)
y[t][j]+=v[j][i]*defOutpoint[i];
e1[t]+=(y[t][j]-tp[t][j])*(y[t][j]-tp[t][j])/2;
y[t][j]=y[t][j]*(OutpointData_MAX[j]-OutpointData_MIN[j]+A)+OutpointData_MIN[j]-A;
}
sss+=e1[t];
}
sss=sss/forecastdata;
printf(" %lf %lfn",e,sss);
}while(sss>0.12);
}
/********************************************************/


void main()
{
int i,j,k;
FILE *fp2;
ReadData(); //读训练数据:输入和输出
unitary(); //归一化,将输入输出数据归一,结果在[0,1]中
forecast(); //检验误差
if((fp2=fopen("D:\data\计算权值.txt","w"))==NULL) //文件输出训练好的权值
{
printf("6can not open the filen");
exit(0);
}
for(i=0;i<defaultpoints;i++)
{
for(k=0;k<inpoints;k++)
fprintf(fp2," %lf ",w[i][k]);
fprintf(fp2,"n");
}
fprintf(fp2,"n");
for(i=0;i<defaultpoints;i++)
fprintf(fp2," %lf ",limen[i]);
fprintf(fp2,"nn");
for(i=0;i<defaultpoints;i++)
{
for(j=0;j<outpoints;j++)
fprintf(fp2," %lf ",v[j][i]);
fprintf(fp2,"n");
}
fclose(fp2);

}


上一篇:人工神经网络matlab源程序代码
下一篇:BP人工神经网络改进算法C语言
精选推荐
一个让深度学习惨败的通用人工智能领域——语境处理
一个让深度学习惨败的通用人工智能领域——语境处理

[2019-11-04]  Context是指用来解释一段给定文本或语句的来源框架,我们可以翻译为上下文或语境。维基百科将context定义为:*在符号学、语言学、社会学和 ...

助力卷积神经网络时空特征学习 史上最大行人重识别视频数据集被提出
助力卷积神经网络时空特征学习 史上最大行人重识别视频数据集被提出

[2017-12-25]  本文提出了一个大型的、长序列的、用于行人重识别的视频数据集,简称LVreID。与现有的同类数据集相比,该数据集具有以下特点:1)长序列:平均每段视频序列长为200帧,包含丰......

MIT用深度学习处理3D点云数据 应用于无人汽车等领域
MIT用深度学习处理3D点云数据 应用于无人汽车等领域

[2019-10-23]  如果你见过自动驾驶汽车,也许会对车顶上那个一直在旋转的圆柱体感到好奇。这是一个雷达传感器,无人驾驶汽车依靠它在现实世界中进行导航。 ...

比利时研发出可以自我愈合伤口的软体机器人
比利时研发出可以自我愈合伤口的软体机器人

[2017-09-03]  软体机器人是机器人技术的新兴领域; 他们“可以与人类相互作用,而不会杀死他们,并拿起像西红柿这样柔软的物体。” 从长远来看,布鲁塞尔大学队伍正在努力创建一个类似的材......

Crossbar将电阻式RAM推入嵌入式AI
Crossbar将电阻式RAM推入嵌入式AI

[2018-05-17]  电阻RAM技术开发商Crossbar表示,它已与航空航天芯片制造商Microsemi达成协议,允许后者在未来的芯片中嵌入Crossbar的非易失性存储器。此举是在先进制造业节点的领先代工厂选......

美国Natilus公司试飞水上无人货机 设计简单成本降低
美国Natilus公司试飞水上无人货机 设计简单成本降低

[2017-12-28]  Natilus创业公司成立于2014年,其梦想是建造大型无人机,以半价提供比船舶快得多国际货运。在十二月份,Natilus计划在旧金山湾测试一个9米翼展的小型原型无人机的水上滑行能力......

可编辑神经网络,有望简化深度学习?
可编辑神经网络,有望简化深度学习?

[2019-10-04]  深度学习是一个计算繁重的过程。 降低成本一直是 Data curation 的一大挑战。 关于深度学习神经网络大功耗的训练过程,已经有研究人员 ...

智能农业:种地的事儿未来全交给这些机器人吧
智能农业:种地的事儿未来全交给这些机器人吧

[2019-12-07]  SRC公司创始人Sam与温波尔庄园农场经理Callum Weir以及监控机器人Tom总部位于英国的农业科技初创公司SRC(Small Robot Company),正在 ...

本周栏目热点

飞桨火力全开,重磅上线3D模型:PointNet++、PointRCNN!

[2020-03-26]  11 年前的「阿凡达」让少年的我们第一次戴上 3D 眼镜,声势浩大的瀑布奔流而下,星罗棋布飘浮在空中的群山,无一不体现着对生命的敬意, ...

神经网络结构在命名实体识别(NER)中的应用

[2018-01-17]  近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展。作为NLP领域的基础任务—命名实体识别(Named Entity Recognition,NER)也不例外,神经网络结......

从基础概念到数学公式,这是一份520页的机器学习笔记(图文并茂)

[2018-06-19]  近日,来自SAP(全球第一大商业软件公司)的梁劲(Jim Liang)公开了自己所写的一份 520 页的学习教程(英文版),详细、明了地介绍了机器学习中的相关概念、数学知识和各......

50行代码玩转生成对抗网络GAN模型!(附源码)

[2018-07-30]  本文为大家介绍了生成对抗网络(Generate Adversarial Network,GAN),以最直白的语言来讲解它,最后实现一个简单的 GAN 程序来帮助大家加深理解。...

深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...