爱吧机器人网 » 技术 > 神经网络 > 正文

BP人工神经网络改进算法C语言

BP人工 神经网络 改进 算法 C语言

BP网络接受样本的顺序会对训练结果有较大的影响,基本 算法 比较“偏爱”较后出现的样本,因此,改进 算法 为对整个样本集的训练,用“总效果”去实施对权矩阵的修改,这就能比较好的解决因样本顺序引起的精度问题和训练的抖动。改进后的 算法 如下:

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <time.h>

#define OUT_COUT 2 //输出向量维数
#define IN_COUT 3 //输入向量维数
#define COUT 6 //样本数量

typedef struct { //bp人工 神经网络 结构
int h; //实际使用隐层数量
double v[IN_COUT][50]; //隐藏层权矩阵i,隐层节点最大数量为100
double w[50][OUT_COUT]; //输出层权矩阵
double a; //学习率
double b; //精度控制参数
int LoopCout; //最大循环次数
} bp_nn;

double fnet(double net) { //Sigmoid函数, 神经网络 激活函数
return 1/(1+exp(-net));
}

int InitBp(bp_nn *bp) { //初始化bp网络

printf("请输入隐层节点数,最大数为100:n");
scanf("%d", &(*bp).h);

printf("请输入学习率:n");
scanf("%lf", &(*bp).a); //(*bp).a为double型数据,所以必须是lf

printf("请输入精度控制参数:n");
scanf("%lf", &(*bp).b);

printf("请输入最大循环次数:n");
scanf("%d", &(*bp).LoopCout);

int i, j;
srand((unsigned)time(NULL));
for (i = 0; i < IN_COUT; i++)
for (j = 0; j < (*bp).h; j++)
(*bp).v[i][j] = rand() / (double)(RAND_MAX);
for (i = 0; i < (*bp).h; i++)
for (j = 0; j < OUT_COUT; j++)
(*bp).w[i][j] = rand() / (double)(RAND_MAX);

return 1;
}

int TrainBp(bp_nn *bp, float x[COUT][IN_COUT], int y[COUT][OUT_COUT]) {
//训练bp网络,样本为x,理想输出为y
double f = (*bp).b; //精度控制参数
double a = (*bp).a; //学习率
int h = (*bp).h; //隐层节点数
double v[IN_COUT][50], w[50][OUT_COUT]; //权矩阵
double Ch_v[IN_COUT][50], Ch_w[50][OUT_COUT]; //权矩阵修改量
double ChgH[50], ChgO[OUT_COUT]; //修改量矩阵
double O1[50], O2[OUT_COUT]; //隐层和输出层输出量
int LoopCout = (*bp).LoopCout; //最大循环次数
int i, j, k, n;
double temp;

for (i = 0; i < IN_COUT; i++) // 复制结构体中的权矩阵
for (j = 0; j < h; j++)
v[i][j] = (*bp).v[i][j];
for (i = 0; i < h; i++)
for (j = 0; j < OUT_COUT; j++)
w[i][j] = (*bp).w[i][j];

double e = f + 1;
for (n = 0; e > f && n < LoopCout; n++) { //对每个样本训练网络
e = 0;
for (j = 0; j < OUT_COUT; j++)
ChgO[j] = 0;
for (j = 0; j < h; j++)
ChgH[j] = 0;
for (j = 0; j < h; j++)
for (k = 0; k < OUT_COUT; k++)
Ch_w[j][k] = 0;
for (j = 0; j < IN_COUT; j++)
for (k = 0; k < h; k++)
Ch_v[j][k] = 0;
for (i= 0; i < COUT; i++) {
for (k= 0; k < h; k++) { //计算隐层输出向量
temp = 0;
for (j = 0; j < IN_COUT; j++)
temp = temp + x[i][j] * v[j][k];
O1[k] = fnet(temp);
}
for (k = 0; k < OUT_COUT; k++) { //计算输出层输出向量
temp = 0;
for (j = 0; j < h; j++)
temp = temp + O1[j] * w[j][k];
O2[k] = fnet(temp);
}
for (j = 0; j < OUT_COUT ; j++) //计算输出误差
e = e + (y[i][j] - O2[j]) * (y[i][j] - O2[j]);
for (j = 0; j < OUT_COUT; j++)
ChgO[j] = O2[j] * (1 - O2[j]) * (y[i][j] - O2[j]);
for (j = 0; j < h; j++)
for (k = 0; k < OUT_COUT; k++)
Ch_w[j][k] += a * O1[j] * ChgO[k]; //累加所有样本训练后的改变量
for (j = 0; j < h; j++) {
temp = 0;
for (k = 0; k < OUT_COUT; k++)
temp = temp + w[j][k] * ChgO[k];
ChgH[j] = temp * O1[j] * (1 - O1[j]);
}
for (j = 0; j < IN_COUT; j++)
for (k = 0; k < h; k++)
Ch_v[j][k] += a * x[i][j] * ChgH[k]; //累加所有样本训练后的改变量,消除样本顺序影响
}
for (j = 0; j < h; j++) //修改输出层权矩阵
for (k = 0; k < OUT_COUT; k++)
w[j][k] = w[j][k] + Ch_w[j][k];
for (j = 0; j < IN_COUT; j++) //修改隐藏层权矩阵
for (k = 0; k < h; k++)
v[j][k] = v[j][k] + Ch_v[j][k];
if (n % 10 == 0) {
printf("误差 : %fn", e);
printf("循环次数:%dn", n);
}
}
printf("总共循环次数:%dn", n);
printf("调整后的隐层权矩阵:n");
for (i = 0; i < IN_COUT; i++) {
for (j = 0; j < h; j++)
printf("%f ", v[i][j]);
printf("n");
}
printf("调整后的输出层权矩阵:n");
for (i = 0; i < h; i++) {
for (j = 0; j < OUT_COUT; j++)
printf("%f ", w[i][j]);
printf("n");
}
for (i = 0; i < IN_COUT; i++) //把结果复制回结构体
for (j = 0; j < h; j++)
(*bp).v[i][j] = v[i][j];
for (i = 0; i < h; i++)
for (j = 0; j < OUT_COUT; j++)
(*bp).w[i][j] = w[i][j];
printf("bp网络训练结束!n");

return 1;
}

int UseBp(bp_nn *bp) { //使用bp网络
float Input[IN_COUT];
double O1[50];
double O2[OUT_COUT]; //O1为隐层输出,O2为输出层输出
while (1) { //持续执行,除非中断程序
printf("请输入3个数:n");
int i, j;
for (i = 0; i < IN_COUT; i++)
scanf("%f", &Input[i]);
double temp;
for (i = 0; i < (*bp).h; i++) {
temp = 0;
for (j = 0; j < IN_COUT; j++)
temp += Input[j] * (*bp).v[j][i];
O1[i] = fnet(temp);
}
for (i = 0; i < OUT_COUT; i++) {
temp = 0;
for (j = 0; j < (*bp).h; j++)
temp += O1[j] * (*bp).w[j][i];
O2[i] = fnet(temp);
}
printf("结果: ");
for (i = 0; i < OUT_COUT; i++)
printf("%.3f ", O2[i]);
printf("n");
}
return 1;
}

int main()
{
float x[COUT][IN_COUT] = {{0.8,0.5,0},
{0.9,0.7,0.3},
{1,0.8,0.5},
{0,0.2,0.3},
{0.2,0.1,1.3},
{0.2,0.7,0.8}}; //训练样本
int y[COUT][OUT_COUT] = {{0,1},
{0,1},
{0,1},
{1,0},
{1,0},
{1,0}}; //理想输出
bp_nn bp;

InitBp(&bp); //初始化bp网络结构
TrainBp(&bp, x, y); //训练bp 神经网络
UseBp(&bp); //测试bp 神经网络

return 1;
}


上一篇:改进的BP神经网络算法(C语言源码)
下一篇:遗传算法优化BP神经网络权值和阈值的通用MATLAB源码
精选推荐
MIT用深度学习处理3D点云数据 应用于无人汽车等领域
MIT用深度学习处理3D点云数据 应用于无人汽车等领域

[2019-10-23]  如果你见过自动驾驶汽车,也许会对车顶上那个一直在旋转的圆柱体感到好奇。这是一个雷达传感器,无人驾驶汽车依靠它在现实世界中进行导航。 ...

深度神经网络揭示了大脑喜欢看什么
深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...

[2017-03-21]  虽然有很多关于机器人取代工人的担心,但哈佛经济学家James Bessen的论文指出,在过去的67年里机器人仅仅淘汰掉人类工作中的一个。在1950 ...

比利时研发出可以自我愈合伤口的软体机器人
比利时研发出可以自我愈合伤口的软体机器人

[2017-09-03]  软体机器人是机器人技术的新兴领域; 他们“可以与人类相互作用,而不会杀死他们,并拿起像西红柿这样柔软的物体。” 从长远来看,布鲁塞尔大学队伍正在努力创建一个类似的材......

可编辑神经网络,有望简化深度学习?
可编辑神经网络,有望简化深度学习?

[2019-10-04]  深度学习是一个计算繁重的过程。 降低成本一直是 Data curation 的一大挑战。 关于深度学习神经网络大功耗的训练过程,已经有研究人员 ...

研究人员融合人类与AI的创造力 显著提高了深度学习的表现
研究人员融合人类与AI的创造力 显著提高了深度学习的表现

[2019-10-12]  由加拿大人工智能领域研究主席、滑铁卢大学系统设计工程教授Alexander Wong领导的一个团队开发了一种新型紧凑型神经网络家族,可以在智能 ...

哈佛大学《自然》发表新驱动技术,让飞行机器人悬停且不受损伤
哈佛大学《自然》发表新驱动技术,让飞行机器人悬停且不受损伤

[2019-11-06]  哈佛大学研究人员发表在《自然》杂志上的一项最新研究,他们开发了一种由柔软的人造肌肉驱动的机器人蜜蜂(RoboBee),这种机器人在撞墙、 ...

亚马逊CEO杰夫·贝佐斯操控巨型有人驾驶机器人(巨型机甲)
亚马逊CEO杰夫·贝佐斯操控巨型有人驾驶机器人(巨型机甲)

[2017-03-21]  近日,亚马逊CEO杰夫·贝佐斯实现了每一个6岁儿童都会有的梦想,他控制了一个巨大的机甲机器人。据国外媒体Verge报道,前天(3月19日),贝 ...

本周栏目热点

飞桨火力全开,重磅上线3D模型:PointNet++、PointRCNN!

[2020-03-26]  11 年前的「阿凡达」让少年的我们第一次戴上 3D 眼镜,声势浩大的瀑布奔流而下,星罗棋布飘浮在空中的群山,无一不体现着对生命的敬意, ...

从基础概念到数学公式,这是一份520页的机器学习笔记(图文并茂)

[2018-06-19]  近日,来自SAP(全球第一大商业软件公司)的梁劲(Jim Liang)公开了自己所写的一份 520 页的学习教程(英文版),详细、明了地介绍了机器学习中的相关概念、数学知识和各......

50行代码玩转生成对抗网络GAN模型!(附源码)

[2018-07-30]  本文为大家介绍了生成对抗网络(Generate Adversarial Network,GAN),以最直白的语言来讲解它,最后实现一个简单的 GAN 程序来帮助大家加深理解。...

神经网络和模糊逻辑的工作流

[2016-11-20]   行业观察 神经网络 和模糊逻辑的工作流 null 来源:神州数码erp 发布时间: 2009-10-14 9:06:01 关键词: 工作流,协同,B2B,OA  以下 ...

深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...