爱吧机器人网 » 技术 > 神经网络 > 正文

用2NDN快速构建基于时间序列的股票预测模型及示例详解

0.概述

        2NDN神经网络建模仿真工具是一个可视化的神经网络建模应用开发平台,她基于可连接组件的模块化结构实现,可扩展性极强,可用于各种行业的运营管理和系统分析 ,尤其是生产效率改善的有效工具。在企业、学校和政府机构得到广泛应用,尤其适合高校建立系统仿真实验室。
>        以下通过一个案例--快速构建基于时间序列的股票预测模型为例,详细介绍2NDN的操作步骤。

1.案例说明

        股票趋势预测代表经济预测中的一种特定类型,它具有其独有的特点。因为实际操作中我们不需要准确地知道下一天的收盘价,只需知道被观测市场的走向(升或降),从而用来决定我们的交易操作(长期/短期-买入/卖出)。我们所希望的是利用历史价格数据预测将来中短期(从2到10或15天)内的价格走势。因而我们的神经网络也不需要预测下一个交易日的准确收盘价,我们从预测的趋势上去发现我们的交易策略。
        换句话说,我们需要预测的是市场的拐点。请看下图:

 

\

        这是一只股票的日K曲线,我们要成功进行股市操作就要根据红色箭头来交易,在最低点买进,在最高点卖出。一个好的交易系统应当只是真正的拐点出现时给出提示,避免生成虚假信号,例如,象篮色箭头所指部分,市场只下降了几个百分点就马上又继续上升。
        可见,我们所要设计的神经网络不需要预测市场的日准确收盘价,我们只对正确预测拐点感兴趣。

2.神经网络建模

        打开2ndn神经网络设计工具,在主界面中通过拖拉方式添加下图所示的图元,这样神经网络模型就建好了,2ndn会自动的随机设置连接的权系数。 当然这个网络目前还没有进行训练,没有任何实际的功能。

 

        用户也可以直接打开随应用程序附带的示例程序,C:Program Files2NDNSampleFinancePreFinancePre.ser(假如系统安装在C:Program Files2NDN),选择文件FinancePre.ser后,示例程序则在主界面中打开,如下图所示:

\

下面对设计器中的各图元说明如下:

① Yahoo输入 (Input Data)

        用于神经网络从yahoo接收金融市场得来的金融数据,设置方法:鼠标选中该图元,右键弹出快捷菜单,点击<属性>,弹出下面的对话框:

\

        其中“符号”是指特定股票的代号。如600728.SS是指新太科技股份有限600728的股票。这个代号必须是由Yahoo定义的代号。“时期”指从Yahoo获取股票市值的周期,‘Daily’获取每天收市记录的股票市值,‘Monthly’获取每月月初记录的股票市值,‘Yearly’获取每年年初记录的股票市值。
“选择列”可选:
第一列:Open
第二列:High
第三列:Low
第四列:Close
第五列:Volume
第六列:Adjusted close

对于特定的股票代码,你必须根据所需的列来设置"选择列"。如果你希望将open,high及volume列作为输入,则需将‘1-2,5’写到“选择列”。
其它设置参考2ndn帮助文档说明。

② 规范化 (DeltaNorm1)

        在此对输入样本数据进行归一化处理,设置方法:鼠标选中该图元,右键弹出快捷菜单,点击<属性>,弹出下面的对话框:

\

说明:若输入最大/最小值设置为0,表示自动取相应节点的最大/最小值。

        下图为经归一化处理后进行查验的结果:

\

③ Delay (Delay Input Layer)

        这里,我们使用YahooFinance输入组件从Yahoo获取股票价格的时间序列,将其与一个延时层相连。设置方法:鼠标选中该图元,右键弹出快捷菜单,点击<属性>,弹出下面的对话框:

\

        这个组件的属性面板中,除"行数"之外,还可以设置"taps值"参数,它是指我们用来提供给神经网络的时间窗口的大小。
        如果设taps值为5,我们就得到一个尺寸为6的时间窗口,由下面的值组成:
[x(t), x(t-1), x(t-2), x(t-3), x(t-4), x(t-5)]
        请记住时间窗口的尺寸等于taps+1,因为延时层还同时输出时间序列的当前值x(t)。

        选中该图元,鼠标右键弹出快捷菜单,选"查验":

\

④ Sigmoid (Hidden Layer)

        网络隐层, 设置方法:鼠标选中该图元,右键弹出快捷菜单,点击<属性>,弹出下面的对话框:

上一页123下一页

上一篇:自组织神经网络
下一篇:对26个英文字符进行特征识别的神经网络模型
精选推荐
2018年企业数字化转型的五大趋势
2018年企业数字化转型的五大趋势

[2017-12-16]  据2016年哈佛商学院研究表明,选择进行数字化转型的企业在3年内表现出了55%的平均毛利润提升,相比之下其他企业毛利润同期降低了37%。数字化转型企业的领头羊,也曾是收入处于......

哈佛大学《自然》发表新驱动技术,让飞行机器人悬停且不受损伤
哈佛大学《自然》发表新驱动技术,让飞行机器人悬停且不受损伤

[2019-11-06]  哈佛大学研究人员发表在《自然》杂志上的一项最新研究,他们开发了一种由柔软的人造肌肉驱动的机器人蜜蜂(RoboBee),这种机器人在撞墙、 ...

机器人灵巧手将成为智能机器人的下一个重大突破
机器人灵巧手将成为智能机器人的下一个重大突破

[2018-01-25]  计算机科学教授兼东北地区助手机器人实验室负责人罗伯特·普拉特(Robert Platt)说:“机器人手操作是下一步要解决的问题。想象一下,一个机器人可以在现实世界中用手去做事......

机器人从工业走向家庭  库卡KUKA目标是引领中国市场
机器人从工业走向家庭 库卡KUKA目标是引领中国市场

[2017-12-08]  机器人正在改变着人们的生活方式,而库卡KUKA想要在中国这个大蛋糕中占有一块大份额,库卡公司正在引领市场...

智能农业:种地的事儿未来全交给这些机器人吧
智能农业:种地的事儿未来全交给这些机器人吧

[2019-12-07]  SRC公司创始人Sam与温波尔庄园农场经理Callum Weir以及监控机器人Tom总部位于英国的农业科技初创公司SRC(Small Robot Company),正在 ...

CES 2018:英特尔推出49量子位芯片争夺量子霸权
CES 2018:英特尔推出49量子位芯片争夺量子霸权

[2018-01-10]  在与Google、IBM的一场关于建立量子计算系统的马拉松比赛中,英特尔通过了一个关键的里程碑。近日,这个科技巨头已经推出了一个49个量子位 ...

智能机器人困惑的时候知道该问什么问题
智能机器人困惑的时候知道该问什么问题

[2017-03-20]   照片:Nick Dentamaro 布朗大学 上周,我们提到了麻省理工学院的一些研究,即通过链接人的大脑来帮助机器人在他们将要犯错误的时 ...

揭秘达芬奇手术机器人
揭秘达芬奇手术机器人

[2018-04-19]  达芬奇手术系统是由美国Intuitive Surgical公司制造的机器人手术系统。美国食品和药物管理局(FDA)于2000年通过该标准,旨在利用微创手段 ...

本周栏目热点

飞桨火力全开,重磅上线3D模型:PointNet++、PointRCNN!

[2020-03-26]  11 年前的「阿凡达」让少年的我们第一次戴上 3D 眼镜,声势浩大的瀑布奔流而下,星罗棋布飘浮在空中的群山,无一不体现着对生命的敬意, ...

从基础概念到数学公式,这是一份520页的机器学习笔记(图文并茂)

[2018-06-19]  近日,来自SAP(全球第一大商业软件公司)的梁劲(Jim Liang)公开了自己所写的一份 520 页的学习教程(英文版),详细、明了地介绍了机器学习中的相关概念、数学知识和各......

50行代码玩转生成对抗网络GAN模型!(附源码)

[2018-07-30]  本文为大家介绍了生成对抗网络(Generate Adversarial Network,GAN),以最直白的语言来讲解它,最后实现一个简单的 GAN 程序来帮助大家加深理解。...

神经网络和模糊逻辑的工作流

[2016-11-20]   行业观察 神经网络 和模糊逻辑的工作流 null 来源:神州数码erp 发布时间: 2009-10-14 9:06:01 关键词: 工作流,协同,B2B,OA  以下 ...

深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...