爱吧机器人网 » 技术 > 神经网络 > 正文

用2NDN快速构建基于时间序列的股票预测模型及示例详解

\

⑤ Sigmoid (Output Layer)

       网络输出层,设置方法参见④。

⑥ 图表 (NetOutput)

        这个组件用来在测试阶段显示出网络的预测结果曲线。设置方法:鼠标选中该图元,右键弹出快捷菜单,点击<属性>,弹出下面的对话框:

\

说明:X轴最大值要大于网络所使用的金融数据有天数。

⑦ 训练 (Teacher)

        神经网络训练层,属性设置如下:

\

⑧ Yahoo输入 (Desired Data)

        用于神经网络从yahoo接收金融市场得来的金融数据,用于生成训练网络的拐点信息。设置方法同" ① Yahoo输入 (Input Data) ",如下:

\

        下图为经归一化处理后的结果:

\

⑨ 规范化 (DeltaNorm2)

        在此对训练目标样本数据进行归一化处理,设置方法同"② 规范化 (DeltaNorm1)"。

⑩ 拐点抽取 (TurningPnts)

        生成用来训练网络的拐点信息,属性设置如下:

\

        "最小改变率"属性用来指示两拐点之间的最小变化率,来生成相应的信号。它不能设置太小值,否则会生成太多的信号(其中很多都是错误信号)。
算法如下:

  • 当市场价格上升超过期望的变化率时,前面一个低点就被标注为'买'信号,相应的输出值设为0。
  • 当市场价格下降超过期望的变化率时,前面一个高点就被标注为'卖'信号,相应的输出值设为+1。
  • 上述两点之间的日期对应的期望值以插值到0与+1的方式进行规范化。

 

⑾图表 (RMSE Error)

        均方误差曲线,用来显示训练过程中的误差变化情况。设置方法:鼠标选中该图元,右键弹出快捷菜单,点击<属性>,弹出下面的对话框:

\

说明:X轴最大值要大于网络所使用的金融数据有天数。将"显示"设置为"True"时,将打开图表显示。

3、神经网络训练

        我们使用2007-6-1到2007-8-1的数据训练网络:将两个yahoo输入插件的时间段都设为2007-6-1至2007-8-1。打开控制面板,设置学习率为0.3,动量常数为0.3,训练样本数为41(该值可通过查验样本得到),训练步数为1000次,均方误差为0.001,是否训练设置为True,是否验证设置为False,是否指导设置为True,预测学习数设置为6(该值为taps+1),是否均方误差设置为True。点击【运行】开始训练。控制面板上会显示训练的进度和收敛情况。如果权值参数选择不合理的话有可能造成网络不能收敛。这时可以选择【工具】->【初始化】,重新随机生成初始的权系数。

\

4、神经网络测试

        网络训练完成后,就可以对生成的网络模型进行测试了,我们使用2007-7-1到2007-9-1的数据作为测试数据,对该时间段内的股票价格拐点进行预测,测试时,将两个yahoo输入插件的时间段都设为2007-7-1到2007-9-1。打开控制面板,设置测试样本数(这里为42),训练步数为1次,是否训练设置为False,是否验证设置为True。点击【运行】开始测试,预测结果将自动在图表插件中显示出来。
        下面是2007-7-1到2007-9-1的股票实际价格走势:

\

        下图是神经网络根据历史数据作出的拐点预测曲线:

\

        可以看出,该网络模型能够将绝大部分的股票走势的拐点正确预测出来,效果非常理想。

5、高级应用(把完成训练的神经网络移植到第三方应用中)

        为了在第三方应用程序中使用训练好的神经网络,可以把训练好的网络输出到文件中,然后在程序中读取这个文件,以实现对未知对象的预测。选择【文件】->【导出模型…】,把当前神经网络保存到文件中。然后就可以在程序中使用了。

下面是从文件中读取神经网络的代码:
    ObjectInputStream ois = new ObjectInputStream(new FileInputStream("D:/2ndn/sample/FinancePre/FinancePre.snet"));

上一页123下一页

上一篇:自组织神经网络
下一篇:对26个英文字符进行特征识别的神经网络模型
精选推荐
搭载人工智能的太空机器人CIMON 2乘SpaceX抵达国际空间站
搭载人工智能的太空机器人CIMON 2乘SpaceX抵达国际空间站

[2019-12-09]  12月5日,搭载人工智能的太空机器人西蒙2号(CIMON 2)乘坐SpaceX火箭Dragon货运舱,从佛罗里达州卡纳维拉尔角空军基地升空,前往国际空间 ...

机器人工程师具体都做什么?
机器人工程师具体都做什么?

[2017-12-08]  机器人工程师是幕后设计师,负责创建机器人和机器人系统,能够执行人类无法完成或不愿意完成的任务。 通过他们的创造,机器人工程师帮助工作更安全,更轻松,更高效,特别是......

美国喷气推进实验室的AI驱动无人机挑战人类飞行员
美国喷气推进实验室的AI驱动无人机挑战人类飞行员

[2017-12-08]  随着无人机及其组件越来越小,效率越来越高,功能越来越强大,我们已经看到越来越多的研究开始让无人机自主飞行在半结构化的环境中,而不依赖于外部定位。 宾夕法尼亚大学在......

可编辑神经网络,有望简化深度学习?
可编辑神经网络,有望简化深度学习?

[2019-10-04]  深度学习是一个计算繁重的过程。 降低成本一直是 Data curation 的一大挑战。 关于深度学习神经网络大功耗的训练过程,已经有研究人员 ...

从AI中窥探人性
从AI中窥探人性

[2018-01-03]  人们对人造智能的恐惧早已成为科幻书籍和电影的极好题材。但现在,一些同样的担忧开始影响关于现实世界AI技术的政策讨论。如果这样的担忧演变成为一种技术恐慌...

MIT最新“人机”互连系统 让双腿机器人复制人体技能
MIT最新“人机”互连系统 让双腿机器人复制人体技能

[2019-11-01]  MIT的小爱马仕想借用你的大脑 ,图片来自: Jo&atilde;o Ramos爱吧机器人网消息,麻省理工学院(MIT)的研究人员展示了一种新型遥操作系 ...

智能机器人困惑的时候知道该问什么问题
智能机器人困惑的时候知道该问什么问题

[2017-03-20]   照片:Nick Dentamaro 布朗大学 上周,我们提到了麻省理工学院的一些研究,即通过链接人的大脑来帮助机器人在他们将要犯错误的时 ...

基于生物启发的机器人很容易适应丢失附属器官
基于生物启发的机器人很容易适应丢失附属器官

[2017-12-17]  很多机器人被设计应用在危险环境,如灾难现场。在这些地方,他们的运动系统完全有可能被损坏。那这样会吓跑这些机器人吗?也许不是,如果它们像日本的东北和北海道大学创造的......

本周栏目热点

飞桨火力全开,重磅上线3D模型:PointNet++、PointRCNN!

[2020-03-26]  11 年前的「阿凡达」让少年的我们第一次戴上 3D 眼镜,声势浩大的瀑布奔流而下,星罗棋布飘浮在空中的群山,无一不体现着对生命的敬意, ...

神经网络结构在命名实体识别(NER)中的应用

[2018-01-17]  近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展。作为NLP领域的基础任务—命名实体识别(Named Entity Recognition,NER)也不例外,神经网络结......

从基础概念到数学公式,这是一份520页的机器学习笔记(图文并茂)

[2018-06-19]  近日,来自SAP(全球第一大商业软件公司)的梁劲(Jim Liang)公开了自己所写的一份 520 页的学习教程(英文版),详细、明了地介绍了机器学习中的相关概念、数学知识和各......

50行代码玩转生成对抗网络GAN模型!(附源码)

[2018-07-30]  本文为大家介绍了生成对抗网络(Generate Adversarial Network,GAN),以最直白的语言来讲解它,最后实现一个简单的 GAN 程序来帮助大家加深理解。...

深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...