爱吧机器人网 » 技术 > 神经网络 > 正文

基于神经网络的人口趋势预测模型

1.案例描述
已知某国从1900年至2000年每隔10年的人口数据,希望建立多项式拟合曲线模型,基于 神经网络 的时间序列预测模型和基于 神经网络 的移动平均模型,预测将来某个时间的人口数量,并就各 算法 的预测结果进行比较分析。

2. 预测 算法 原理
2.1. 基于 神经网络 的一维时间序列预测模型
在时间序列里需要设置延时值taps,所谓延时值就是将taps个参数作为输入来预测下一个输出。例如:
[1982,28.70]                          [28.70, 27.90, 34.30][31.00]                                          
[1983,27.90]                          [27.90, 34.30, 31.00][36.75]                                          
[1984,34.30]                          [34.30, 31.00, 36.75][29.67]                                           
[1985,31.00]                          [31.00, 36.75, 29.67][33.69]                                           
[1986,36.75]                          [36.75, 29.67, 33.69][28.78]                                           
[1987,29.67]     taps=3--->  [29.67, 33.69, 28.78][31.25]                                           
[1988,33.69]                          [33.69, 28.78, 31.25][31.39]                                           
[1989,28.78]                                                                              
[1990,31.25]                                                                                          
[1991,31.39]
上面的例子是taps=3的例子,就是用三个输入来预测一个输出,即上面中蓝色的部分作为输入来预测红色部分的一个输出。
时间序列预测就是将上面绿色部分作为一组原始样本进行转化为右面蓝色部分的最终样本来预测。例如当预测1922年时,我们输入
[28.78, 31.25,31.39]时间序列模型就会预测出下一时间点1992年的预测值。

2.2. 基于 神经网络 的移动加权平均时间序列预测模型
移动加权平均需要设置移动权值moveValue和延时值taps,移动加权平均的第一步是按照移动权值moveValue进行处理,处理的方式是按照移动权值将moveValue个值进行加和平均作为一个输入,下面的例子是当moveValue=2 的处理结果。
 [1982,1]                                   [1982.0,0.0]                                        
 [1983,2]                                   [1983.0,1.5]                                        
 [1984,3]                                   [1984.0,2.5]                                        
 [1985,4]                                   [1985.0,3.5]                                        
 [1986,5]      moveValue=2    [1986.0,4.5]                                        
 [1987,6]                                   [1987.0,5.5]                                        
 [1988,7]                                   [1988.0,6.5]                                                                                         
 [1989,8]                                   [1989.0,7.5]                                        
 [1990,9]                                   [1990.0,8.5]                                        
第二步按照taps值进行与时间序列相同的预测处理,所不同的是需要将预测结果进行还原就得到了我们预测的结果。

3.建模实现
系统基于 神经网络 通用预测平台套件实现模型训练和仿真。


上一篇:基于小波变换特征提取的桩基缺陷分类神经网络模型
下一篇:人工神经网络的基本原理、发展和应用
精选推荐
瑞士研发出微型机器人集群 可像蚂蚁一样互相交流并协同工作
瑞士研发出微型机器人集群 可像蚂蚁一样互相交流并协同工作

[2019-07-12]  EPFL(瑞士联邦理工学院)的研究人员受到了蚂蚁的启发,开发了一款仅有10克重的小型机器人:他们可以相互交流,分配角色并完成复杂的任务。 ...

麻省理工学院最新研究:优化软体机器人的控制和设计
麻省理工学院最新研究:优化软体机器人的控制和设计

[2019-11-24]  软体机器人属于一个新的领域,它可能在诸如外科手术等领域发挥重要作用(手术时的纳米机器人需要在人体内部移动而不损伤软组织)。软体机器 ...

集群机器人领域最新研究:一种用于探测未知环境的微型无人机群
集群机器人领域最新研究:一种用于探测未知环境的微型无人机群

[2019-10-26]  (图:无人机扩散至不同方向来探索环境。当一个无人机注意到另一个无人机在它的首选方向,它将试图飞到另一个方向。若首选方向冲突,低优先 ...

人工神经网络技术解码人类行为和想象时的大脑活动信号
人工神经网络技术解码人类行为和想象时的大脑活动信号

[2017-08-23]  为搜索引擎过滤信息,棋盘游戏对弈,识别图像 人工智能在某些任务中远远超过了人类智能。来自弗莱堡由神经科学家私人讲师Tonio Ball博士领导的几个杰出的BrainLinks-Bra......

揭秘达芬奇手术机器人
揭秘达芬奇手术机器人

[2018-04-19]  达芬奇手术系统是由美国Intuitive Surgical公司制造的机器人手术系统。美国食品和药物管理局(FDA)于2000年通过该标准,旨在利用微创手段 ...

7种常见的机器人焊接类型
7种常见的机器人焊接类型

[2017-12-17]  机器人焊接是工业领域最常见的机器人应用之一,近几十年来主要由汽车行业驱动。机器人焊接在完成大批量,重复性的焊接任务时效率最高。...

通过对抗性图像黑入大脑
通过对抗性图像黑入大脑

[2018-03-02]  在上面的图片中,左边是一张猫的照片。在右边,你能分辨出它是同一只猫的图片,还是一张看起来相似的狗的图片?这两张图片之间的区别在于, ...

人工智能准确预测患者一年内的死亡风险,原理却无法解释
人工智能准确预测患者一年内的死亡风险,原理却无法解释

[2019-11-13]  图片来自BURGER PHANIE SCIENCE PHOTO LIBRARY美国最新研究显示,人工智能通过查看心脏测试结果,以高达85%以上的准确率预测了一个人在一 ...

本周栏目热点

飞桨火力全开,重磅上线3D模型:PointNet++、PointRCNN!

[2020-03-26]  11 年前的「阿凡达」让少年的我们第一次戴上 3D 眼镜,声势浩大的瀑布奔流而下,星罗棋布飘浮在空中的群山,无一不体现着对生命的敬意, ...

神经网络结构在命名实体识别(NER)中的应用

[2018-01-17]  近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展。作为NLP领域的基础任务—命名实体识别(Named Entity Recognition,NER)也不例外,神经网络结......

从基础概念到数学公式,这是一份520页的机器学习笔记(图文并茂)

[2018-06-19]  近日,来自SAP(全球第一大商业软件公司)的梁劲(Jim Liang)公开了自己所写的一份 520 页的学习教程(英文版),详细、明了地介绍了机器学习中的相关概念、数学知识和各......

50行代码玩转生成对抗网络GAN模型!(附源码)

[2018-07-30]  本文为大家介绍了生成对抗网络(Generate Adversarial Network,GAN),以最直白的语言来讲解它,最后实现一个简单的 GAN 程序来帮助大家加深理解。...

深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...