爱吧机器人网 » 技术 > 神经网络 > 正文

一种RBF神经网络的自适应学习算法

    整个算法的流程大体可分成三个部分。第一个部分是调节隐层节点的中心位置和隐层与输出层之间的权值。本文采用梯度下降法,每循环一次,相应地调节一次。第二个部分是执行添加操作。添加的策略是根据输出误差在输入空间分布的不均匀性而提出的。如果执行该操作过频,不但会减小隐层节点的中心位置和权值的调节速度,而且会造成隐层节点数目过多,计算量增大,导致过度拟合。考虑到以上因素,采用间歇的方式执行添加操作,只有当i=4n+1(n=0,1,2,…)时,才执行添加操作。第三个部分是执行删除操作。如果执行该操作过频,对于一些新增加的隐层节点,其中心位置和权值有可能还没来得及调整就已经被删除了,所以也采用间歇的方式执行。当i=8m+7(m=0,1,2,…)时,才执行删除操作。
2.4 RBF网络参数调整算法
   
本文采用梯度下降法调整RBF的隐层节点中心位置和权值。设隐层节点的数目为m,一共有N组训练样本:(x,y)={(x1,y1),(x2,y2),…,(xN,yN)}。神经网络的实际输出为:\。选取均方差为误差函数,取ρ1和ρ2为学习率。
    (1)调整隐层节点的权值
    \
    (2)调整隐层节点中心的位置

    \


3 仿真实例
   
(1)对随机曲面进行恢复
    仿真中定义曲面方程如下:
    \
    原始数据集所得曲面图像如图2所示。

\


    以x(x=x1,x2)为输入矢量,其中,x1和x2分别以1为间隔在区间[0,9]内均匀取值,一共得到100组输入数据(x1,x2)。选取ε=0.02,θ=0.3,ρ1=0.1,ρ2=0.05。经过20次训练,最后得到的网络具有41个隐层节点,系统的均方误差为0.023 3。拟合后的曲面图像如图3所示。

\


    (2)对θ取不同值时的比较,结果如表1~表3所示。

\



4 结语
   
针对RBF神经网络隐层节点的参数和数量难以确定的问题,提出了一种自适应的学习算法。该算法事先不需要确定隐层节点的中心位置和数量,而是通过相应的添加和删除策略实现的。添加策略是根据输出误差在输入空间分布的不均匀而提出的,通过执行相应的操作可以使隐层节点的数目在学习过程中自适应的增加。同时,为了使隐层节点数目不过于膨胀,还制定了删除策略。它先分析每个隐层节点对整个网络所作的贡献,然后删除贡献小的节点,以保持网络结构简单。仿真研究表明,该网络不仅灵活性高,结构简单,精度高,而且具有较好的泛化能力。

上一页12下一页

上一篇:基于优化神经网络的三相全控整流电路故障诊断
下一篇:神经系统或将使机器人拥有痛感
精选推荐
机器人灵巧手将成为智能机器人的下一个重大突破
机器人灵巧手将成为智能机器人的下一个重大突破

[2018-01-25]  计算机科学教授兼东北地区助手机器人实验室负责人罗伯特·普拉特(Robert Platt)说:“机器人手操作是下一步要解决的问题。想象一下,一个机器人可以在现实世界中用手去做事......

Crossbar将电阻式RAM推入嵌入式AI
Crossbar将电阻式RAM推入嵌入式AI

[2018-05-17]  电阻RAM技术开发商Crossbar表示,它已与航空航天芯片制造商Microsemi达成协议,允许后者在未来的芯片中嵌入Crossbar的非易失性存储器。此举是在先进制造业节点的领先代工厂选......

从AI中窥探人性
从AI中窥探人性

[2018-01-03]  人们对人造智能的恐惧早已成为科幻书籍和电影的极好题材。但现在,一些同样的担忧开始影响关于现实世界AI技术的政策讨论。如果这样的担忧演变成为一种技术恐慌...

比利时研发出可以自我愈合伤口的软体机器人
比利时研发出可以自我愈合伤口的软体机器人

[2017-09-03]  软体机器人是机器人技术的新兴领域; 他们“可以与人类相互作用,而不会杀死他们,并拿起像西红柿这样柔软的物体。” 从长远来看,布鲁塞尔大学队伍正在努力创建一个类似的材......

机器人iCub作为嵌入式AI的标准机器人研究平台的重要性
机器人iCub作为嵌入式AI的标准机器人研究平台的重要性

[2017-12-24]  机器人的研究在过去10年中得益于一个具有嵌入式人工智能(AI)的标准化开源平台——人形机器人iCub。iCub最初在意大利被创建,如今在欧洲、美国、韩国、新加坡和日本的实验室......

基于生物启发的机器人很容易适应丢失附属器官
基于生物启发的机器人很容易适应丢失附属器官

[2017-12-17]  很多机器人被设计应用在危险环境,如灾难现场。在这些地方,他们的运动系统完全有可能被损坏。那这样会吓跑这些机器人吗?也许不是,如果它们像日本的东北和北海道大学创造的......

谷歌宣布搜索算法重大升级,用BERT模型理解用户搜索意图
谷歌宣布搜索算法重大升级,用BERT模型理解用户搜索意图

[2019-10-26]  谷歌刚刚宣布,其搜索引擎的核心算法正在进行一项重大升级,这项升级可能会改变10%的搜索结果排序。此项升级应用了自然语言处理技术(BERT ...

美国普渡大学研发快动作软体机器人,灵感来自变色龙舌头捕食
美国普渡大学研发快动作软体机器人,灵感来自变色龙舌头捕食

[2019-10-31]  本文图片均来自:Ramses v Martinez 普渡大学变色龙、蝾螈和许多蟾蜍利用积蓄的弹性能量,向距离1 5倍体长的毫无防备的昆虫伸出粘糊糊的舌 ...

本周栏目热点

飞桨火力全开,重磅上线3D模型:PointNet++、PointRCNN!

[2020-03-26]  11 年前的「阿凡达」让少年的我们第一次戴上 3D 眼镜,声势浩大的瀑布奔流而下,星罗棋布飘浮在空中的群山,无一不体现着对生命的敬意, ...

神经网络结构在命名实体识别(NER)中的应用

[2018-01-17]  近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展。作为NLP领域的基础任务—命名实体识别(Named Entity Recognition,NER)也不例外,神经网络结......

从基础概念到数学公式,这是一份520页的机器学习笔记(图文并茂)

[2018-06-19]  近日,来自SAP(全球第一大商业软件公司)的梁劲(Jim Liang)公开了自己所写的一份 520 页的学习教程(英文版),详细、明了地介绍了机器学习中的相关概念、数学知识和各......

50行代码玩转生成对抗网络GAN模型!(附源码)

[2018-07-30]  本文为大家介绍了生成对抗网络(Generate Adversarial Network,GAN),以最直白的语言来讲解它,最后实现一个简单的 GAN 程序来帮助大家加深理解。...

深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...