爱吧机器人网 » 技术 > 神经网络 > 正文

用神经网络代替数学模型 DeltaGrad有野心

如果一个人特别会炒股,特别会赚钱,但是你问他的赚钱方法是什么,炒股方法是什么,他却完全不能说出个所以然,将自己的钱交给这样的一个人,你真的放心吗?

炒股
 

在量化交易这个领域,36氪此前报道过不少项目。有私人量化交易平台JoinQuant、RiceQuant以及优矿,为量化交易领域提供核心算法支持的众加,量化策略商城微量网、以量财富为代表的量化理财平台,以及为量化投资者提供智能交易和分析工具的名策数据。如果你不懂算法,只懂投资逻辑,还有专门帮你生成量化投资策略的果仁网。

目前市场上看到的量化交易,背后大多有某种交易逻辑。每一个量化交易策略的建立,都需要输入与这套逻辑相关联的因子,比如历史表现、公司财务数据、宏观经济数据、上下游供应商数据等众多参数,建立一套模型以算出标的上涨或下跌的概率,并生成投资组合和调仓策略。随着近几年人工智能兴起,不少人开始选用机器学习等方式,输入众多因子,让AI自己生成策略。

36氪最近接触到的DetlaGrad的做法则跟这些都有不同,它们的定位是基于人工智能的量化投资公司,只输入交易数据,利用神经网络来训练模型。创始人说他们想做的是中国的桥水基金,但是从他的表述来看,我认为应该说他们想做量化交易界的Deepmind(研发阿尔法狗的团队),就连他们A股 机器人 的名字,都叫“智富狗”。

DetlaGrad的创始人庞然表示,团队早几年是做计算机围棋的,传统将人类下围棋的逻辑梳理成策略算法,庞然称此为“穷尽”的方法,最多只能将机器训练到五到六段,阿尔法狗的成功则说明,用深度学习网络的算法,能将机器训练到超过人类中的九段高手。他不否认策略的方式有效,国外大量量化基金的成功就说明了这一点,但是他认为这种方法难以超越人类。

庞然认为,这说明有些过于复杂的决策,影响的因子和情况的可能性太多,传统用逻辑和策略等“穷尽”的算法可能是搞不定的,现实中高手做判断也许是依靠长期经验积累下来的直觉,比如有的基金经理和操盘手只需要看K线,不需要看基本面,凭借“盘感”就能做出很好的判断,资深医生也是类似。直觉不代表瞎想,但他们却不一定能清楚说出背后判断的逻辑,实际上人脑的思考方式就是如此。

DetlaGrad的团队认为今年阿尔法狗的升级版Master是变革点,用神经管网络替代原来用逻辑和策略构建的数学模型这种思路,可以用到金融领域之上。阿尔法狗不知道选手怎么思考,它光看选手怎么走,就学习并超越了人类。因此,量化投资并不需要知道最好的操盘手怎么想,只需要知道最好的操盘怎么操作。

“世界第一的操盘手,就是交易数据。”我们目前从公开渠道所看到的交易数据,包括每日走势、交易量等,尤其买单卖单,是经过系统整合而成的数据,颗粒度不够细。因此,除了公开数据之外,DetlaGrad还会购买颗粒度更细的交易数据来训练模型,培养机器的“盘感”。

根据庞然介绍,DetlaGrad的模型目前做的是针对A股的量化交易,分为以下几个部分:

市场顶部风险预警和个股及大盘未来上涨概率预测(分为短、中、长三个维度,目前一只新股票需要1天的训练时间)。

策略发现和仓位调整,从后台15万策略中,找到最新触发,风险最小、年平均收益最大的策略。目前团队所使用的策略,均经过2011年以来的历史数据回测,保证平均年收益大于100%,最大回撤小于10%,然后基于上述上涨概率找到当天风险最小,收益最大的操作方法,输出成策略,告诉操盘手(现在有人把关,未来纯机器)仓位该调到多少,止损怎么设置,这样的操作对应的风险及收益分别是多少。根据最新股票预测数据,系统会每日调仓。

系统性风险预测,DetlaGrad有专门的预测系统性风险的模型,测算未来三天、五天、七天等出现系统性风险的概率,达到一定概率就清仓。

由于国内缺少高频交易和对冲工具、市场受政策影响大,国外对冲基金的策略拿到国内常常会失效,庞然认为,借助以深度神经网络为代表的新技术,也许可以解决这个问题。DetlaGrad的模型从6月份开始测试,模拟账户单月收益6.9%,同月大盘是6.4%;8月15日起启动了100万的实盘资金做测试,截止9月中旬实盘收益4.7%,最大回撤1.7%。

庞然认为,目前团队的优势在于团队了解计算机围棋变革的全过程,知道如何将变革 应用 到证券投资市场;使用自行设计并开发的网络结构而不是开源了网络结构,算法有领先性。

目前看来,DetlaGrad团队的实盘测试金额较小,毕竟不同管理规模的策略不同;同时模型还没有经历过现实中“跨周期”(经历过熊市和牛市)的考验,单凭历史数据无法预料“黑天鹅”事件。比如由诺奖得主成立的文艺复兴科技公司,旗下的量化基金在成立前三年成绩骄人,但后来因1998年俄罗斯债券违约事件的连锁反应产生巨额亏损。

另外一个问题是,投资者真的能对纯AI的决策有信息吗?作为一家私募基金,假设某天超越人类智商的模型做出了人类无法理解的决定,我们要听之任之还是阻止?天弘基金智能投资部总经理助理刘硕凌分享内部用AI 技术改进投资的经验,他们一共选124个因子,来识别某个股票是成好的还是坏的。”第一版的效果非常好,但是无法解释,在这阶段,目前投资者还是不能接受,所以我们最后用了相对简单的决策树模型,我们可以看清楚AI 的思考模式。”


上一篇:人工神经网络技术解码人类行为和想象时的大脑活动信号
下一篇:英特尔仿人类大脑研发“神经元”芯片,能解读人的喜怒哀乐
精选推荐
谷歌宣布搜索算法重大升级,用BERT模型理解用户搜索意图
谷歌宣布搜索算法重大升级,用BERT模型理解用户搜索意图

[2019-10-26]  谷歌刚刚宣布,其搜索引擎的核心算法正在进行一项重大升级,这项升级可能会改变10%的搜索结果排序。此项升级应用了自然语言处理技术(BERT ...

什么是机器人学?机器人学简介
什么是机器人学?机器人学简介

[2017-12-14]  机器人学是工程学与科学的交叉学科,包括机械工程,电气工程,计算机科学等。机器人技术涉及机器人的设计、制造、操作和应用,以及用于控制、感官反馈和信息处理的计算机系统。...

7种常见的机器人焊接类型
7种常见的机器人焊接类型

[2017-12-17]  机器人焊接是工业领域最常见的机器人应用之一,近几十年来主要由汽车行业驱动。机器人焊接在完成大批量,重复性的焊接任务时效率最高。...

美国喷气推进实验室的AI驱动无人机挑战人类飞行员
美国喷气推进实验室的AI驱动无人机挑战人类飞行员

[2017-12-08]  随着无人机及其组件越来越小,效率越来越高,功能越来越强大,我们已经看到越来越多的研究开始让无人机自主飞行在半结构化的环境中,而不依赖于外部定位。 宾夕法尼亚大学在......

2023年服务机器人市场将超过250亿美元
2023年服务机器人市场将超过250亿美元

[2017-09-04]  全球服务机器人市场预计到2023年将达到250亿美元, 并在预测期内登记15% 的复合年增长率。短期中期回收期和投资回报率高 (ROI), 以及在教育和研究、临场感、防御、救援和安......

国外眼科手术机器人为视网膜静脉阻塞患者带来希望
国外眼科手术机器人为视网膜静脉阻塞患者带来希望

[2017-03-20]  视网膜静脉阻塞,简称RVO,对患者来说是一种严重的疾病。该病病因为视网膜静脉中存在血液凝块,这可能导致视力严重下降,在某些情况下,病 ...

谷歌在中国成立一个新的人工智能(AI)研究中心
谷歌在中国成立一个新的人工智能(AI)研究中心

[2017-12-13]  谷歌正在中国建立一个新的人工智能(AI)研究中心,希望进一步扩展到中国,以充分利用中国高度重视的人工智能技术。人工智能是目前地球上最具竞争力的领域之一,亚马逊,微软......

九台“猎豹”机器人组队踢球,麻省理工高材生们的高级趣味
九台“猎豹”机器人组队踢球,麻省理工高材生们的高级趣味

[2019-11-09]  本周,在麻省理工学院10号楼外草坪上展开了一场别开生面的足球比赛。在绿草如茵的基利安球场上,一群由人工智能驱动的机器人就是这场比赛的 ...

本周栏目热点

飞桨火力全开,重磅上线3D模型:PointNet++、PointRCNN!

[2020-03-26]  11 年前的「阿凡达」让少年的我们第一次戴上 3D 眼镜,声势浩大的瀑布奔流而下,星罗棋布飘浮在空中的群山,无一不体现着对生命的敬意, ...

从基础概念到数学公式,这是一份520页的机器学习笔记(图文并茂)

[2018-06-19]  近日,来自SAP(全球第一大商业软件公司)的梁劲(Jim Liang)公开了自己所写的一份 520 页的学习教程(英文版),详细、明了地介绍了机器学习中的相关概念、数学知识和各......

50行代码玩转生成对抗网络GAN模型!(附源码)

[2018-07-30]  本文为大家介绍了生成对抗网络(Generate Adversarial Network,GAN),以最直白的语言来讲解它,最后实现一个简单的 GAN 程序来帮助大家加深理解。...

神经网络和模糊逻辑的工作流

[2016-11-20]   行业观察 神经网络 和模糊逻辑的工作流 null 来源:神州数码erp 发布时间: 2009-10-14 9:06:01 关键词: 工作流,协同,B2B,OA  以下 ...

深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...