爱吧机器人网 » 技术 > 神经网络 > 正文

用神经网络代替数学模型 DeltaGrad有野心

如果一个人特别会炒股,特别会赚钱,但是你问他的赚钱方法是什么,炒股方法是什么,他却完全不能说出个所以然,将自己的钱交给这样的一个人,你真的放心吗?

炒股
 

在量化交易这个领域,36氪此前报道过不少项目。有私人量化交易平台JoinQuant、RiceQuant以及优矿,为量化交易领域提供核心算法支持的众加,量化策略商城微量网、以量财富为代表的量化理财平台,以及为量化投资者提供智能交易和分析工具的名策数据。如果你不懂算法,只懂投资逻辑,还有专门帮你生成量化投资策略的果仁网。

目前市场上看到的量化交易,背后大多有某种交易逻辑。每一个量化交易策略的建立,都需要输入与这套逻辑相关联的因子,比如历史表现、公司财务数据、宏观经济数据、上下游供应商数据等众多参数,建立一套模型以算出标的上涨或下跌的概率,并生成投资组合和调仓策略。随着近几年人工智能兴起,不少人开始选用机器学习等方式,输入众多因子,让AI自己生成策略。

36氪最近接触到的DetlaGrad的做法则跟这些都有不同,它们的定位是基于人工智能的量化投资公司,只输入交易数据,利用神经网络来训练模型。创始人说他们想做的是中国的桥水基金,但是从他的表述来看,我认为应该说他们想做量化交易界的Deepmind(研发阿尔法狗的团队),就连他们A股 机器人 的名字,都叫“智富狗”。

DetlaGrad的创始人庞然表示,团队早几年是做计算机围棋的,传统将人类下围棋的逻辑梳理成策略算法,庞然称此为“穷尽”的方法,最多只能将机器训练到五到六段,阿尔法狗的成功则说明,用深度学习网络的算法,能将机器训练到超过人类中的九段高手。他不否认策略的方式有效,国外大量量化基金的成功就说明了这一点,但是他认为这种方法难以超越人类。

庞然认为,这说明有些过于复杂的决策,影响的因子和情况的可能性太多,传统用逻辑和策略等“穷尽”的算法可能是搞不定的,现实中高手做判断也许是依靠长期经验积累下来的直觉,比如有的基金经理和操盘手只需要看K线,不需要看基本面,凭借“盘感”就能做出很好的判断,资深医生也是类似。直觉不代表瞎想,但他们却不一定能清楚说出背后判断的逻辑,实际上人脑的思考方式就是如此。

DetlaGrad的团队认为今年阿尔法狗的升级版Master是变革点,用神经管网络替代原来用逻辑和策略构建的数学模型这种思路,可以用到金融领域之上。阿尔法狗不知道选手怎么思考,它光看选手怎么走,就学习并超越了人类。因此,量化投资并不需要知道最好的操盘手怎么想,只需要知道最好的操盘怎么操作。

“世界第一的操盘手,就是交易数据。”我们目前从公开渠道所看到的交易数据,包括每日走势、交易量等,尤其买单卖单,是经过系统整合而成的数据,颗粒度不够细。因此,除了公开数据之外,DetlaGrad还会购买颗粒度更细的交易数据来训练模型,培养机器的“盘感”。

根据庞然介绍,DetlaGrad的模型目前做的是针对A股的量化交易,分为以下几个部分:

市场顶部风险预警和个股及大盘未来上涨概率预测(分为短、中、长三个维度,目前一只新股票需要1天的训练时间)。

策略发现和仓位调整,从后台15万策略中,找到最新触发,风险最小、年平均收益最大的策略。目前团队所使用的策略,均经过2011年以来的历史数据回测,保证平均年收益大于100%,最大回撤小于10%,然后基于上述上涨概率找到当天风险最小,收益最大的操作方法,输出成策略,告诉操盘手(现在有人把关,未来纯机器)仓位该调到多少,止损怎么设置,这样的操作对应的风险及收益分别是多少。根据最新股票预测数据,系统会每日调仓。

系统性风险预测,DetlaGrad有专门的预测系统性风险的模型,测算未来三天、五天、七天等出现系统性风险的概率,达到一定概率就清仓。

由于国内缺少高频交易和对冲工具、市场受政策影响大,国外对冲基金的策略拿到国内常常会失效,庞然认为,借助以深度神经网络为代表的新技术,也许可以解决这个问题。DetlaGrad的模型从6月份开始测试,模拟账户单月收益6.9%,同月大盘是6.4%;8月15日起启动了100万的实盘资金做测试,截止9月中旬实盘收益4.7%,最大回撤1.7%。

庞然认为,目前团队的优势在于团队了解计算机围棋变革的全过程,知道如何将变革 应用 到证券投资市场;使用自行设计并开发的网络结构而不是开源了网络结构,算法有领先性。

目前看来,DetlaGrad团队的实盘测试金额较小,毕竟不同管理规模的策略不同;同时模型还没有经历过现实中“跨周期”(经历过熊市和牛市)的考验,单凭历史数据无法预料“黑天鹅”事件。比如由诺奖得主成立的文艺复兴科技公司,旗下的量化基金在成立前三年成绩骄人,但后来因1998年俄罗斯债券违约事件的连锁反应产生巨额亏损。

另外一个问题是,投资者真的能对纯AI的决策有信息吗?作为一家私募基金,假设某天超越人类智商的模型做出了人类无法理解的决定,我们要听之任之还是阻止?天弘基金智能投资部总经理助理刘硕凌分享内部用AI 技术改进投资的经验,他们一共选124个因子,来识别某个股票是成好的还是坏的。”第一版的效果非常好,但是无法解释,在这阶段,目前投资者还是不能接受,所以我们最后用了相对简单的决策树模型,我们可以看清楚AI 的思考模式。”


上一篇:人工神经网络技术解码人类行为和想象时的大脑活动信号
下一篇:英特尔仿人类大脑研发“神经元”芯片,能解读人的喜怒哀乐
精选推荐
Waymo:人性和行为心理学才是无人驾驶最大的挑战
Waymo:人性和行为心理学才是无人驾驶最大的挑战

[2019-11-03]  自动驾驶汽车作为AI领域内最大的挑战之一,谷歌致力于其研发已有十余载,现在他们逐渐意识到,最困难的是如何让人们享受驾驶的乐趣。这是一 ...

国外眼科手术机器人为视网膜静脉阻塞患者带来希望
国外眼科手术机器人为视网膜静脉阻塞患者带来希望

[2017-03-20]  视网膜静脉阻塞,简称RVO,对患者来说是一种严重的疾病。该病病因为视网膜静脉中存在血液凝块,这可能导致视力严重下降,在某些情况下,病 ...

谷歌大脑发布ROBEL基准 鼓励用低成本机器人训练AI系统
谷歌大脑发布ROBEL基准 鼓励用低成本机器人训练AI系统

[2019-10-11]  训练AI系统的机器人D& 39;Claw和D& 39;Kitty用于控制机器人的人工智能系统,测量其性能所使用的基准通常仅限于为工业环境设计的昂贵硬件, ...

科学家从蟑螂获得启发 教机器人更好地走路
科学家从蟑螂获得启发 教机器人更好地走路

[2017-12-11]  Weihmann指出:“我特别感到惊讶的是,动物运动稳定机制的变化与腿部协调的变化是一致的。昆虫的慢运行非常稳定,因为它的重心很低,三条腿总是以协调的方式运动。...

可编辑神经网络,有望简化深度学习?
可编辑神经网络,有望简化深度学习?

[2019-10-04]  深度学习是一个计算繁重的过程。 降低成本一直是 Data curation 的一大挑战。 关于深度学习神经网络大功耗的训练过程,已经有研究人员 ...

亚马逊计划建一个4000万美元的机器人中心
亚马逊计划建一个4000万美元的机器人中心

[2019-11-07]  爱吧机器人网消息,亚马逊11月6日宣布了一项计划,计划在美国马萨诸塞州韦斯特伯勒建立一个4000万美元、35万平方英尺的机器人创新中心。新 ...

英国首台月球车是个小型四腿机器人 将于2021年登月
英国首台月球车是个小型四腿机器人 将于2021年登月

[2019-10-12]  探测器将用四条腿探测月球表面,并将数据传回着陆器,后者将把数据传回地球图 詹姆斯温斯皮尔英国即将成为继美国、俄罗斯、中国之后的又一 ...

谷歌《Nature》发论文称实现量子霸权 18亿倍速碾压世界最强超算
谷歌《Nature》发论文称实现量子霸权 18亿倍速碾压世界最强超算

[2019-10-23]  谷歌坚称自己已经取得了量子霸权——这标志着计算研究领域的一个重要里程碑。谷歌首次发布声明是在今年9月,虽然遭到竞争对手的质疑,但就 ...

本周栏目热点

飞桨火力全开,重磅上线3D模型:PointNet++、PointRCNN!

[2020-03-26]  11 年前的「阿凡达」让少年的我们第一次戴上 3D 眼镜,声势浩大的瀑布奔流而下,星罗棋布飘浮在空中的群山,无一不体现着对生命的敬意, ...

从基础概念到数学公式,这是一份520页的机器学习笔记(图文并茂)

[2018-06-19]  近日,来自SAP(全球第一大商业软件公司)的梁劲(Jim Liang)公开了自己所写的一份 520 页的学习教程(英文版),详细、明了地介绍了机器学习中的相关概念、数学知识和各......

50行代码玩转生成对抗网络GAN模型!(附源码)

[2018-07-30]  本文为大家介绍了生成对抗网络(Generate Adversarial Network,GAN),以最直白的语言来讲解它,最后实现一个简单的 GAN 程序来帮助大家加深理解。...

神经网络和模糊逻辑的工作流

[2016-11-20]   行业观察 神经网络 和模糊逻辑的工作流 null 来源:神州数码erp 发布时间: 2009-10-14 9:06:01 关键词: 工作流,协同,B2B,OA  以下 ...

深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...