爱吧机器人网 » 技术 > 神经网络 > 正文

Vicarious研发最新神经网络 可破解图像验证码

现如今,一提及到人工智能,或许很多人都会在第一时间想到AlphaGo,没错,它确实在某些方面已经强大到足够去战胜人类,超越人类,但是正如我们所说,人工智能目前还不够智能,因为它与人类还是有差距的,至少它们永远无法独立的完成一部书的写作,无法欣赏人类可以欣赏的美。

你想错了,以上这些它们都做到了。

我必须告诉你,人工智能破解了一个被人们广泛使用的工具:验证码,用于区分人类和机器人的工具。

验证码是烦人的谜题,可能会要求你填写扭曲的图片中的文本,或者点击图片中所有的汽车。根据最近在科学杂志上发表的一篇研究,一种新型的 AI 能够以高达 66.6 %的准确率决某些类型的验证码。作为对比,人类的准确率为 87%,而机器只要能够达到 1 % 的准确率,则被认为已经破解验证码。

验证码

 

验证码(CAPTCHA),全称全自动区分计算机和人类的图灵测试,发明于 20 世纪 90 年代后期,最初用于防止欺诈和垃圾邮件机器人。基本的想法是创建一个人类容易破解,而计算机很难破解的难题。

计算机很擅长计算,阅读纯文字也不难,在动态和静态图片中识别物体的能力也越来越强,但当这些图像稍微扭曲时,电脑就陷入了死循环。原因在于,我们可以训练计算机识别所有字体中的“M”,但这些 M 却可以以无数种方式进行扭曲,计算机不具备概括能力。

从一小部分例子中学习和概括的能力是我们的大脑与计算机的差异之一,这种能力使我们能够轻松地解决验证码。正如科学杂志上介绍的那样,扎克伯格和贝佐斯资助的人工智能公司 Vicarious 的研究人员开发了概率机器视觉算法,该算法能够理解并通过验证码测试,因为它可以从一些小例子中进行概括。

其他研究人员已经训练了深度学习算法来破解验证码,但是这些算法通常需要数百万个标记的案例来训练算法,而且只能解决一种特定的样式。而 Vicarious 的人工智能可以破解各种文本的验证码风格,并且效率更高。

借鉴了 “实验神经科学数据” 的见解,Vicarious 的研究人员提出了一种称为递归皮层网络的概率算法,该算法将验证码作为一个基于文字训练图像的形状和外观的集合(例如字母表面的平滑性)。

其他神经网络能够识别那些由人工标记过数百万次的单词和字母的训练样本。而递归皮层网络更接近真实的人类大脑对视觉线索的反应。 RCN 首先根据字母轮廓和少数几个未被扭曲的示例字母的外观生成模型,然后用它来确定在扭曲的验证码短语中对应的是哪个字母。

正如研究人员在文章中写到的,如果一台机器能以高于 1% 的准确率解决这个问题,那么验证码就被破解了。 Vicarious 算法提供了多种不同的验证码风格,并且在破解方面具有非常高的成功率。 它解决 reCAPTCHA 的准确率为 66.6%,BotDetect 的准确率为64.4%,雅虎验证码的准确率为 57.4%,Paypal 验证码准确率为 57.1%,所有这些只需要“非常少的训练数据”。 例如,对于 reCAPTCHA,算法每个字符只训练了五个非失真的案例。

其他现有技术的神经网络将需要比实际验证码字符串大 5 万倍的训练集,而不仅仅是清晰的字符。 作为一个基准,研究人员使用不同的神经网络模型来达到 89.9% 的准确率,但是它需要 230 万训练图像才能到实现,而且当验证码做出很小的改变时,准确率就会大大下降。

新算法的主要改进在于,Vicarious 的研究人员创建了一个神经网络,该神经网络将根据形状和外观创建字母模型 可以用来“理解”验证码。而不是通过数百万个验证码实例来训练神经网络破解特定类型的验证码。

人工智能

 

研究人员在创建了可以解决各种验证码的神经网络,意味着人类将不得不开始寻找更强大的机器人训练机制。Google 开创的一个解决方案就是音频 reCAPTCHA,就像文本验证码一样,但通过语音。 最近马里兰大学的一个计算机科学家团队创建了 unCaptcha,一个免费的算法,可以在几秒钟内解决 reCAPTCHA ,准确率达到 85% 以上。

尽管验证码在可预见的将来仍然可能被用作互联网的第一道防线,但它不能保证网站的访客百分之百是真人。不久之后,我们可能会使用银翼杀手中的“人性测验”来登陆网站。


上一篇:英特尔CEO科再奇:业内第一个神经网络处理器发布以创新技术推进人工智能发展
下一篇:神经学家未来需要征服的难题 怎样才能让机器拥有意识
精选推荐

[2017-03-21]  虽然有很多关于机器人取代工人的担心,但哈佛经济学家James Bessen的论文指出,在过去的67年里机器人仅仅淘汰掉人类工作中的一个。在1950 ...

Waymo:人性和行为心理学才是无人驾驶最大的挑战
Waymo:人性和行为心理学才是无人驾驶最大的挑战

[2019-11-03]  自动驾驶汽车作为AI领域内最大的挑战之一,谷歌致力于其研发已有十余载,现在他们逐渐意识到,最困难的是如何让人们享受驾驶的乐趣。这是一 ...

亚马逊CEO杰夫·贝佐斯操控巨型有人驾驶机器人(巨型机甲)
亚马逊CEO杰夫·贝佐斯操控巨型有人驾驶机器人(巨型机甲)

[2017-03-21]  近日,亚马逊CEO杰夫·贝佐斯实现了每一个6岁儿童都会有的梦想,他控制了一个巨大的机甲机器人。据国外媒体Verge报道,前天(3月19日),贝 ...

机器人从工业走向家庭  库卡KUKA目标是引领中国市场
机器人从工业走向家庭 库卡KUKA目标是引领中国市场

[2017-12-08]  机器人正在改变着人们的生活方式,而库卡KUKA想要在中国这个大蛋糕中占有一块大份额,库卡公司正在引领市场...

机器人iCub作为嵌入式AI的标准机器人研究平台的重要性
机器人iCub作为嵌入式AI的标准机器人研究平台的重要性

[2017-12-24]  机器人的研究在过去10年中得益于一个具有嵌入式人工智能(AI)的标准化开源平台——人形机器人iCub。iCub最初在意大利被创建,如今在欧洲、美国、韩国、新加坡和日本的实验室......

谷歌在中国成立一个新的人工智能(AI)研究中心
谷歌在中国成立一个新的人工智能(AI)研究中心

[2017-12-13]  谷歌正在中国建立一个新的人工智能(AI)研究中心,希望进一步扩展到中国,以充分利用中国高度重视的人工智能技术。人工智能是目前地球上最具竞争力的领域之一,亚马逊,微软......

17世纪的莱布尼茨试图制造“思想机器”却被现实打脸
17世纪的莱布尼茨试图制造“思想机器”却被现实打脸

[2019-11-05]  莱布尼茨,德国哲学家、数学家、律师,历史上少见的通才1666年,德国博学家戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz)发 ...

谷歌宣布搜索算法重大升级,用BERT模型理解用户搜索意图
谷歌宣布搜索算法重大升级,用BERT模型理解用户搜索意图

[2019-10-26]  谷歌刚刚宣布,其搜索引擎的核心算法正在进行一项重大升级,这项升级可能会改变10%的搜索结果排序。此项升级应用了自然语言处理技术(BERT ...

本周栏目热点

飞桨火力全开,重磅上线3D模型:PointNet++、PointRCNN!

[2020-03-26]  11 年前的「阿凡达」让少年的我们第一次戴上 3D 眼镜,声势浩大的瀑布奔流而下,星罗棋布飘浮在空中的群山,无一不体现着对生命的敬意, ...

从基础概念到数学公式,这是一份520页的机器学习笔记(图文并茂)

[2018-06-19]  近日,来自SAP(全球第一大商业软件公司)的梁劲(Jim Liang)公开了自己所写的一份 520 页的学习教程(英文版),详细、明了地介绍了机器学习中的相关概念、数学知识和各......

50行代码玩转生成对抗网络GAN模型!(附源码)

[2018-07-30]  本文为大家介绍了生成对抗网络(Generate Adversarial Network,GAN),以最直白的语言来讲解它,最后实现一个简单的 GAN 程序来帮助大家加深理解。...

神经网络和模糊逻辑的工作流

[2016-11-20]   行业观察 神经网络 和模糊逻辑的工作流 null 来源:神州数码erp 发布时间: 2009-10-14 9:06:01 关键词: 工作流,协同,B2B,OA  以下 ...

深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...