三、 工业大数据核心支撑力
在工业大数据的实践中,宏观与微观、规模与定制、个性与共性必然成为三个主要的矛盾。在这三大矛盾的背后,我们要通过工业大数据看到我们以前看不到的因素,处理好这些数据,让数据成为有价值的信息,转换过为工业服务。
现在关注工业4.0五大支撑力:
1、是降低生产过程中的浪费。生产过程中的消耗来源于组织与组织之间、人与人之间、材料与工艺之间、流程之间,所以我们首先要考虑的问题是,如何降低消耗、浪费。
2、是制造工业环保与安全。没有碳排放是不现实的,但排放怎么转移,怎么去消费它是问题。
3、是根据生产状况,实现系统自我调整。在工业大数据里,我们称之为自适应。整个工业4.0讲的就是自适应、自感应、自调理。大数据分析到最后有很大程度取决于人工智能,指的是自适应能力的强弱,机器自我学习能力的强弱。
4、是实现制造业的价值化。
5、是实现用户需求、产品设计、制造和营销的配合。
四、 大数据驱动未来工业4.0
首先,今天我们面临越来越挑剔的用户,第一个挑战是怎么让用户有更好的消费体验。
其次,企业各部门的竖井没有打通,缺乏环境数据,包括类似地理位置信息、设备的生命状态等。产品的设定和生产要素,跟流程、工艺都有千丝万缕的关系,数字化能够帮我们把这个轮廓勾勒出来。
未来,工业大数据在四个方面会形成商业机会
1、是沟通。即设备环境信号识别。信号识别的关键点是信息收集过程中实时性还不够,信号识别的对象不够完整和全面,这是建立工业大数据能力需要考虑的第一个问题。
2、是集成与融合。即大数据的数据平台。所谓融合就是说,OA、知识库、ERP、采购系统等所有可触摸和非可触摸的数据都应该串联起来。这一串联工作还有非常漫长的路要走。
3、是分析与决策。我们大数据的建模能力不差,缺的是对行业理解的投入以及形成模型的能力,以及不断推倒重建和调整的持续投入。
4、是创建自助服务文化。机器能够自我学习和自我调节。通过焦点转移到不可见的因素,数据给了我们发现创新的全新多视角,最终导向了革命性的商业机会。
5、 工业大数据应用两个关键技术问题。
<上一页 1 2 3 下一页>