数据建模的问题
第一,产品数据建模是制造信息化的核心技术,也是工业大数据应用的核心。工业4.0实现了各个实体之间的相互连接,必然产生出对这些实体的大数据进行建模的问题。首先要建设这些实体自身的数据模型,核心是产品模型,产品模型这是一个动态演变的全生命周期的模型,从需求一直到成品,再到转化为对客户的价值,包括产品需求、产品设计、产品工艺、产品加工、产品检验测试、产品维护等阶段的模型数据。
第二,产品与原料、部件、设备、工人、生产线、工厂、客户、供应链之间相互关联,建立起更为全面的工业企业数据模型,这种关联比以往更为综合、复杂,既有静态结构关系关联,也有动态行为关联。
第三,所有实体数据模型,在静态模型的基础上,还需要采集这些实体的动态行为模型,产品行为分析、客户行为分析、设备行为分析、工厂行为分析等构成了工业大数据复杂的行为分析模型,使得工业大数据的洞察力更深刻也更复杂。
数据集成
在工业4.0的三种不同集成方式下,数据集成的模式也有不同的模型。工业4.0有三种境界的集成,也面临三种境界的数据共享。
1、是企业内的垂直集成,要实现垂直的各个环节的产品数据交换与共享。
2、是横向数据集成,各种上下游数据的交换与共享,包括客户、供应商、合作伙伴等数据。一般是互联网上XML文件传输。大数据技术的发展和应用,使得价值链上各环节数据和信息能够被深入分析和挖掘,为制造企业提供看待价值网络的全新视角。
3、是端到端的数据集成,生命周期的企业内外、制造、营销、消费、经济、产业、技术等大数据的交换与共享,真正的工业4.0的大数据集成与分析。
<上一页 1 2 3