的神经元网络,以分布和并发的方式传导信号,相当于超大规模的并行计算(ParallelComputing)。因此尽管单个神经元传导信号的速度很慢(每秒百米的级别,远低于计算机的CPU),但这种超大规模的并行计算结构仍然使得人脑远超计算机,成为世界上到目前为止最强大的信息处理系统。
2.2.2 计算机的传统结构制约人工智能的发展
美籍匈牙利科学家冯·诺依曼(JohnVon·Neumann)是数字计算机之父,首先提出了计算机体系结构的设想,目前世界上绝大多数计算机都采取此种结构,它也被称之为冯·诺依曼体系结构。简单来说,冯·诺依曼体系结构的基本特征有以下几点:
1、采用存储程序方式,指令和数据不加区别混合存储在同一个存储器中,指令和数据都可以送到运算器进行运算,即由指令组成的程序是可以修改的。
2、存储器是按地址访问的线性编址的一维结构,每个单元的位数是固定的。
3、指令由操作码和地址组成。操作码指明本指令的操作类型,地址码指明操作数和地址。操作数本身无数据类型的标志,它的数据类型由操作码确定。
4、通过执行指令直接发出控制信号控制计算机的操作。指令在存储器中按其执行顺序存放,由指令计数器指明要执行的指令所在的单元地址。指令计数器只有一个,一般按顺序递增,但执行顺序可按运算结果或当时的外界条件而改变。
5、以运算器为中心,I/O设备与存储器间的数据传送都要经过运算器。
6、数据以二进制表示。
人工智能对计算机性能的要求很高,尤其是在非数值处理应用领域。冯·诺依曼体系的串行结构和人脑庞大复杂的并行结构相去甚远,使得现有计算机系统难以迅速有效地处理复杂的感知、推理、决策等问题。硬件体系能力的不足加上发展道路上曾经出现偏差(希望直接在通用型的人工智能方面取得突破),以及算法的缺陷,使得人工智能技术的发展在上世纪80年代末到90年代曾经一度低迷。
2.3 四大催化剂齐备,人工智能发展迎来转折点
近几年来,随着技术的进步,人工智能的发展出现了显著的复苏趋势。我们认为,下述4个方面的原因带来了人工智能发展的向上拐点。
2.3.1 云计算使成本低廉的大规模并行计算得以实现
上文中提到,冯·诺依曼体系的串行结构使得计算机无法满足人工智能对硬件的要求,而近年来云计算的出现至少部分解决了这个问题。
从概念上讲,可把云计算看成是“存储云+计算云”的有机结合,即“云计算=存储云+计算云”。存储云的基础技术是分布存储,而计算云的基础技术正是并行计算:将大型的计算任务拆分,然后再派发到云中的各个节点进行分布式的计算,最终再将结果收集后统一处理。大规模并行计算能力的实现使得人工智能往前迈进了一大步。
云计算的实质是一种基础架构管理的方法论,是把大量的计算资源组成IT资源池,用于动态创建高度虚拟化的资源供用户使用。在云计算环境下,所有的计算资源都能够动态地从硬件基础架构上增减,以适应工作任务的需求。云计算基础架构的本质是通过整合、共享和动态的硬件设备供应来实现IT投资的利用率最大化,这就使得使用云计算的单位成本大大降低,非常有利于人工智能的商业化运营。
值得特别指出的是,近来基于GPU(图形处理器)的云计算异军突起,以远超CPU的并行计算能力获得业界瞩目。
CPU和GPU架构差异很大,CPU功能模块很多,能适应复杂运算环境;GPU构成则相对简单,目前流处理器和显存控制器占据了绝大部分晶体管。CPU 中大部分晶体管主要用于构建控制电路(比如分支预测等)和高速缓冲存储器(Cache),只有少部分的晶体管来完成实际的运算工作;而GPU的控制相对简单,而且对Cache的需求小,所以大部分晶体管可以组成各类专用电路、多条流水线,使得GPU的计算速度有了突破性的飞跃,拥有了惊人的处理浮点运算的能力。现在CPU的技术进步正在慢于摩尔定律,而GPU的运行速度已超过摩尔定律,每6个月其性能加倍。
CPU的架构是有利于X86指令集的串行架构,从设计思路上适合尽可能快的完成一个任务;对于GPU来说,它最初的任务是在屏幕上合成显示数百万个像素的图像——也就是同时拥有几百万个任务需要并行处理,因此GPU被设计成可并行处理很多任务,天然具备了执行大规模并行计算的优势。
现在不仅谷歌、Netflix