爱吧机器人网 » 资讯 > 行业新闻 > 正文

深度解析人工智能在未来IT产业的发展趋势

用 GPU来搭建人工智能的神经网络,Facebook、Amazon、Salesforce都拥有了基于GPU的云计算能力,国内的科大讯飞也采用了GPU 集群支持自己的语音识别技术。GPU的这一优势被发现后,迅速承载起比之前的图形处理更重要的使命:被用于人工智能的神经网络,使得神经网络能容纳上亿个节点间的连接。传统的CPU集群需要数周才能计算出拥有1亿节点的神经网的级联可能性,而一个GPU集群在一天内就可完成同一任务,效率得到了极大的提升。另外,GPU随着大规模生产带来了价格下降,使其更能得到广泛的商业化应用。

2.3.2大数据训练可以有效提高人工智能水平

机器学习是人工智能的核心和基础,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。该领域的顶级专家Alpaydin先生如此定义:“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。”

我们已经进入到大数据时代,来自全球的海量数据为人工智能的发展提供了良好的条件。

 

全球数据总量

 

根据IDC的监测统计,2011年全球数据总量已经达到1.8ZB(1ZB等于1万亿GB,1.8ZB也就相当于18亿个1TB的移动硬盘,人均 200GB,这些信息的量相当于可以填充572亿个32GB的iPad),而这个数值还在以每两年翻一番的速度增长,预计到2020年全球将总共拥有 35ZB的数据量,增长近20倍。

2.3.3“深度学习”技术的出现

“深度学习”是机器学习研究中的一个新的领域,它模拟人类大脑神经网络的工作原理,将输出的信号通过多层处理,将底层特征抽象为高层类别,它的目标是更有效率、更精确地处理信息。深度学习自2006年由GeoffreyHinton教授和他的两个学生被提出后,使得机器学习有了突破性的进展,极大地推动了人工智能水平的提升。2013年,《麻省理工技术评论》把它列入年度十大技术突破之一。

人脑具有一个深度结构,认知过程是逐步进行,逐层抽象的,能够层次化地组织思想和概念。深度学习之所以有如此大的作用,正是因为它较好地模拟了人脑这种“分层”和“抽象”的认知和思考方式。

深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。因此,“深度模型”是手段,“特征学习”是目的。区别于传统的浅层学习,深度学习的不同在于:1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;2)明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。

深度学习使得人工智能在几个主要领域都获得了突破性进展:在语音识别领域,深度学习用深层模型替换声学模型中的混合高斯模型(GaussianMixtureModel,GMM),获得了相对30%左右的错误率降低;在图像识别领域,通过构造深度卷积神经网络(CNN),将Top5错误率由26%大幅降低至15%,又通过加大加深网络结构,进一步降低到11%;在自然语言处理领域,深度学习基本获得了与其他方法水平相当的结果,但可以免去繁琐的特征提取步骤。可以说到目前为止,深度学习是最接近人类大脑的智能学习方法。

深度学习引爆了一场革命,将人工智能带上了一个新的台阶,将对一大批产品和服务产生深远影响。

2.3.4“人脑”芯片将从另一个方向打开人工智能的大门

前面提到了现代计算机的冯·诺依曼体系结构阻碍了大规模并行计算的实现,导致人工智能发展受限。而今天人工智能发展面临突破,除了上文说的云计算、大数据、深度学习三个原因之外,另外一个方向的努力也是不容忽视的,那就是彻底改变了冯·诺依曼体系结构的“人脑”芯片。

“人脑”芯片,也叫神经形态芯片,是从硬件方向对人脑物理结构的模拟。这种芯片把数字处理器当作神经元,把内存作为突触,跟传统·冯诺依曼结构不一样,它的内存、CPU和通信部件是完全集成在一起,因此信息的处理完全在本地进行。而且由于本地处理的数据量并不大,传统计算机内存与CPU之间的瓶颈不复存在了。同时神经元之间可以方便快捷地相互沟通,只要接收到其他神经元发过来的脉冲(动作电位),这些神经元就会同时做动作。

3.人工智能产业发

上一页1234567891011下一页

上一篇:德研制先进机器蜻蜓:可用手机控制(图)
下一篇:机器人产业在中国的发展机会在哪?
精选推荐
美国Natilus公司试飞水上无人货机 设计简单成本降低
美国Natilus公司试飞水上无人货机 设计简单成本降低

[2017-12-28]  Natilus创业公司成立于2014年,其梦想是建造大型无人机,以半价提供比船舶快得多国际货运。在十二月份,Natilus计划在旧金山湾测试一个9米翼展的小型原型无人机的水上滑行能力......

这些人型机器人是如此真实,你的肉眼几乎无法区分
这些人型机器人是如此真实,你的肉眼几乎无法区分

[2017-09-03]   我们生活在一个区分现实与幻想变得越来越困难的世界。由于机器人技术的进步,创造人工的人类正在逐渐接近完美的最终目标。我们现在看到的机器人不再只是一块发光二极管,......

可编辑神经网络,有望简化深度学习?
可编辑神经网络,有望简化深度学习?

[2019-10-04]  深度学习是一个计算繁重的过程。 降低成本一直是 Data curation 的一大挑战。 关于深度学习神经网络大功耗的训练过程,已经有研究人员 ...

机器人灵巧手将成为智能机器人的下一个重大突破
机器人灵巧手将成为智能机器人的下一个重大突破

[2018-01-25]  计算机科学教授兼东北地区助手机器人实验室负责人罗伯特·普拉特(Robert Platt)说:“机器人手操作是下一步要解决的问题。想象一下,一个机器人可以在现实世界中用手去做事......

农业将为高科技行业 农业机器人的应用领域
农业将为高科技行业 农业机器人的应用领域

[2017-12-17]  农业正在迅速成为一个令人兴奋的高科技产业,吸引了新专业人士,新公司和新投资者。技术发展迅速,不仅提高了农民的生产能力,而且促进了我们所知道的机器人和自动化技术的发展。...

MIT最新“人机”互连系统 让双腿机器人复制人体技能
MIT最新“人机”互连系统 让双腿机器人复制人体技能

[2019-11-01]  MIT的小爱马仕想借用你的大脑 ,图片来自: João Ramos爱吧机器人网消息,麻省理工学院(MIT)的研究人员展示了一种新型遥操作系 ...

人工智能民主化能否实现取决于科技巨头
人工智能民主化能否实现取决于科技巨头

[2017-12-29]  我们经常听到像谷歌和微软这样的公司说他们希望人工智能民主化。这是一个很好的词,民主化。 但这些公司如何界定“民主化”还不清楚,像AI本身一样,它似乎有点炒作的味道...

改变保险市场的格局:无人机如何通过更快的估算、响应时间和利益交付来使消费者受益
改变保险市场的格局:无人机如何通过更快的估算、响应时间和利益交付来

[2018-12-08]  市场研究公司IHS Markit预测,到2020年,专业无人机市场将通过农业,能源和建筑等行业利用测量,制图,规划等技术实现77 1%的复合年增长率(CAGR)。与此同时,消费者无人......

本周栏目热点

美国情报部门:量子计算和 AI 成为国家安全的新威胁

[2018-12-15]  将核武器、恐怖主义和气候变化与量子计算、人工智能和物联网相提并论的情况并不多见,但美国政府认为,所有这些都将对未来美国国家安全构成“新的威胁”。...

协作•物联——机器人描绘汽车未来智能工厂

[2016-09-03]     8月24日至26日, 第十二届上海国际汽车制造技术与装备及材料展览会(AMTS 2016)在上海新国际博览中心盛大举行。全球领先的 工业机器人 ...

[2016-01-04]     1月2日凌晨消息,《麻省理工科技评论》(MIT Technology Review)网站今日 ...

2016年值得期待的科技进步之社交机器人

[2016-01-07]     虚拟现实应用空间不断拓展   当前,虚拟现实技术吸引了全世界科技爱好者的极大兴趣。2016年,虚拟现实将逐步走进主流消费者市场,该领 ...

关于第二届世界互联网大会 有哪些信息被透露

[2015-12-14]   12月9日消息,国务院新闻办公室于今日上午10时举行新闻发布会,国家互联网信息办公室主任鲁炜、副主任 ...