爱吧机器人网 » 资讯 > 行业新闻 > 正文

新版“阿尔法狗”零生万物 这种说法不实际

汉森机器人公司的David Hanson在会上展示这个名为Sophia的美女机器人。
 

第一代阿尔法狗已经让我们见识到了它的奇迹,它的威力,甚至有人将其奉为神一般的存在,但是就在不久之前,新版阿尔法狗横空出世,这次,它的威力再次得到提升,据悉,这款新版的阿尔法狗将可以实现从空白开始,完全独立,完全自我学习,自学成才。

创造者给它起名叫“Zero(零)”。道家说,道生一,一生二,二生三,三生万物。这从零开始,能超越人类顶尖棋手的围棋技艺,听起来颠覆常理,让很多人心生畏惧。

加上被AlphaGo击败的世界知名围棋选手柯洁不久后在社交平台上表示:“一个纯净、纯粹自我学习的AlphaGo是最强的……对于AlphaGo的自我进步来讲……人类太多余了(请联系上下文,注意语境)。”

“人类多余”的概念被断章取义,一个算法仅凭自己就能学习出高超的棋艺,人工智能能够“零”生万物,就这样被解读出来,然而事实是这样吗?科技日报记者专访了业内学者,听听他们怎么说。

正听:Zero也需要数据库

“Zero可以自己产生数据,下一秒的数据和上一秒的数据‘对打’,赢了就再生成,如此循环往复,胜招就逐渐被‘进化’出来了。”中国首席数据官联盟专家组成员、瀚思科技创始人高瀚昭说。

那么,没有数据库的支持,Zero是如何产生数据、又如何知道产生何种数据的呢?难道真的有了“聪明才智”?

华大基因CEO尹烨并不赞成“自学成才”的说法。他将AlphaGo Zero,和AlphaGo就学习源头进行了对比。“后者被输入了人类历史上的3000万个棋局、一步一步从中学到了对应围棋规则的算法,Zero就是站在AlphaGo的‘肩膀’上,继承了后者规则明确的确定算法,才能懂得围棋的规则,遵循这个规则,左右互搏。”

也就是说,Zero从前辈处学习规则,“它不需要的只是以往人类的比赛数据,并不意味着不需要数据库。”高瀚昭说。

北京语言大学教授荀恩东将Zero之所以能“棋高一着”解读为两个原因,一是“在同样的规则下,机器抓到的落子策略,和人抓到的不同”;二是“它的运算速度比人快,因此能够进行更深入的、甚至穷举的计算,完全知道后招。”

也就是说,既找对了路,还跑得快。但是,这样的状况是有前提的——“规则是简单的!胜负是明确的!策略是可以穷举的!”荀恩东说。

分析一下Zero的学习过程,就能了解为什么必须是这类问题,它们才能胜出。

根据规则,它不断产生新数据,进而新旧数据相互对抗比赛,最终产生一个胜负结果。也就是说,在固定的规则下,不断地对“胜负”进行验证,让Zero获得了精进的棋艺,而当把这些策略全部验证一遍的时候,它就无敌了。

1997年,电脑“深蓝”战胜了国际象棋著名棋手卡斯帕罗夫。“这个事件当时也引起了轰动,”尹烨说,“那个时候国际象棋还不能穷举,但是随着硬件运算速度的进步和算法的提升,到2005年前后,国际象棋已经能够穷举了,意味着不管走哪一步,电脑都可以‘走一步看N步’,算出所有可能,进而给出所有对应的方法。”随着量子计算的应用,围棋走法的穷举也是可能的。

“在算法方面,Zero采用对抗的强化学习,是机器学习算法的最新进展。它对推动人工智能发展有着重大理论和应用意义。”荀恩东说。

定位:仍处于计算智能阶段

“其实下围棋是简单的‘计算智能’,之所以它这么受关注,是因为围棋一直以来是策略的象征。”荀恩东说。

“运筹帷幄之中,决胜千里之外”总能让人联想到这样一幕——中军帐中,一炷香烟雾缭绕,摆定棋盘棋子,帐内是黑白子对弈,帐外千军万马搏杀。

围棋是智慧的象征,当人类无法进行全样本分析的时候,如何根据部分样本选取最优策略,体现了判断的智慧,而当计算能力能够计算全样本时,智能的类型发生了转变——

“通过卓越的计算能力,Zero根据算法能有一个快速的收敛(趋向准确),按照策略能达到接近全局优的结果。”荀恩东说,这意味着它不需要判断选择,而需要不知疲倦地找最优解、不断尝试。“由于计算深度更深了,采用了优化的参数计算策略、优化过程得到了加速、得到了更好的计算模型。”

“目前为止,落地应用的AI是从速度、自动化、易部署等方向入手‘进化’——速度进化基于硬件提升、分布式处理等;自动化是指无需人工大量标记,AI可自动选择有用的信息进行记忆训练,这也是易部署的一部分。”高瀚昭说,这样的“进化”是Zero使用4个TPU(神经网络训练所需的专业芯片)、尝试490万盘棋局就可以超越前任的原因。

但是,它并不比人类更擅长处理复杂问题。还记得小时候无穷尽的考试吗?更有明确答案的选择题和判断题AI可以做,作文题差点。

荀恩东给出了更专业的分类,“人工智能发展分三个层次:能存会算的计算智能、有视听触觉的感知智能、能理解会思考的认知智能。Zero仍处于计算智能这个阶段。”

尹烨也认为,不依赖数据库的互搏算法无法应对规则不明确的计算,“比如医疗健康行业,依然是数据为王,算法会根据数据的积累而不断修正,从人工智能(AI)走向真智能(RI)。”

展望:更高级的智能还在路上

荀恩东举了一个诙谐的例子。“比如‘你妹’这个词,什么时候是指代人物、什么时候是在表达一种情感,让AI分清楚就非常难做到。”

尹烨也认为,语言有两种,仅为了交流而存在的语言无需再学,但为了表达思想和情感的语言学习会更加受重视。

事实上,让AI获得感知、认知智能等的研究一直在进行,“目前认知智能需要走的路还很长。”荀恩东说。

数据显示,AI产业中的技术类企业有55%在计算机视觉领域、13%在自然语言处理领域。力触觉的研究也被纳入到了国家重点研发计划中。

感知智能的视觉、听觉、触觉、正在产业研究、基础研究等领域不断拓展。荀恩东说,“语言智能是人工智能的重要研究方向,中文句法语义分析是语言智能的核心技术。计算机缺少足够的特征去捕捉中文上下文语言信息,在分析准确度上始终未取得实质性突破。”

为了让中文能够不落人后地纳入到AI语系,北京语言大学语言资源高精尖中心开展中文语义分析攻关,以期获得具有高鲁棒性、高正确率和线速计算复杂度的中文句法语义分析器。“鲁棒性就是让机器具有处理各种语言形式,包括不规范表达的能力。”荀恩东说,“我们建立了TB级别以上的汉语分析大数据,未来AI可以听懂书面语、口语、双关语、玩笑话……”

视觉方面,公安部上海消防研究所等单位已经做到可以看火苗发送火警警报了。触觉方面,手势、体态、触控、语音、表情、眼动、生理等非精确交互信息正在被捕捉、认知、理解,甚至综合呈现。

“这些都不仅仅是端对端的问题,而是需要复杂策略解决的问题。AI系统需要多要素的输入,也期待多要素的输出。”荀恩东说,在这些领域,人类经验的数据库仍不能被抛开,“就比如砌墙,Zero可以被看作是砌一道新墙,而更高的阶段是弥补一道残缺不全的墙。”


上一篇:人工智能的发展带动工业无人机成为市场新宠
下一篇:三星宣布构建“物联网智能” 改变传统盈利模式
精选推荐
谷歌《Nature》发论文称实现量子霸权 18亿倍速碾压世界最强超算
谷歌《Nature》发论文称实现量子霸权 18亿倍速碾压世界最强超算

[2019-10-23]  谷歌坚称自己已经取得了量子霸权——这标志着计算研究领域的一个重要里程碑。谷歌首次发布声明是在今年9月,虽然遭到竞争对手的质疑,但就 ...

人工神经网络技术解码人类行为和想象时的大脑活动信号
人工神经网络技术解码人类行为和想象时的大脑活动信号

[2017-08-23]  为搜索引擎过滤信息,棋盘游戏对弈,识别图像 人工智能在某些任务中远远超过了人类智能。来自弗莱堡由神经科学家私人讲师Tonio Ball博士领导的几个杰出的BrainLinks-Bra......

MIT用深度学习处理3D点云数据 应用于无人汽车等领域
MIT用深度学习处理3D点云数据 应用于无人汽车等领域

[2019-10-23]  如果你见过自动驾驶汽车,也许会对车顶上那个一直在旋转的圆柱体感到好奇。这是一个雷达传感器,无人驾驶汽车依靠它在现实世界中进行导航。 ...

基于生物启发的机器人很容易适应丢失附属器官
基于生物启发的机器人很容易适应丢失附属器官

[2017-12-17]  很多机器人被设计应用在危险环境,如灾难现场。在这些地方,他们的运动系统完全有可能被损坏。那这样会吓跑这些机器人吗?也许不是,如果它们像日本的东北和北海道大学创造的......

麻省理工又秀神技:推出如魔法般跳跃的方块机器人集群
麻省理工又秀神技:推出如魔法般跳跃的方块机器人集群

[2019-10-31]  几天前,小编向大家介绍过麻省理工(MIT)研发的一种自组装机器人集群(点此阅览),它们可以用统一标准的小单元自动组装出各种大型结构。 ...

2018年企业数字化转型的五大趋势
2018年企业数字化转型的五大趋势

[2017-12-16]  据2016年哈佛商学院研究表明,选择进行数字化转型的企业在3年内表现出了55%的平均毛利润提升,相比之下其他企业毛利润同期降低了37%。数字化转型企业的领头羊,也曾是收入处于......

机器人灵巧手将成为智能机器人的下一个重大突破
机器人灵巧手将成为智能机器人的下一个重大突破

[2018-01-25]  计算机科学教授兼东北地区助手机器人实验室负责人罗伯特·普拉特(Robert Platt)说:“机器人手操作是下一步要解决的问题。想象一下,一个机器人可以在现实世界中用手去做事......

新型轻便机器人套装重5kg,辅助跑步和步行
新型轻便机器人套装重5kg,辅助跑步和步行

[2019-10-23]  虽然步行对大多数人来说似乎不是负担,但对有些人来说,这项简单的运动往往会让人感到筋疲力尽。比如手术或中风后恢复的患者、帕金森氏症患 ...

本周栏目热点

工业机器人视觉功能详解

[2018-09-21]  视觉堆垛程序通过相机视野内目标比例的变化来估算目标的高度并引导机器人的运动补偿目标的偏移,不但包括X轴,Y轴和X-Y平面旋转度R,也同时包括Z轴。...

协作•物联——机器人描绘汽车未来智能工厂

[2016-09-03]     8月24日至26日, 第十二届上海国际汽车制造技术与装备及材料展览会(AMTS 2016)在上海新国际博览中心盛大举行。全球领先的 工业机器人 ...

美国情报部门:量子计算和 AI 成为国家安全的新威胁

[2018-12-15]  将核武器、恐怖主义和气候变化与量子计算、人工智能和物联网相提并论的情况并不多见,但美国政府认为,所有这些都将对未来美国国家安全构成“新的威胁”。...

[2016-01-04]     1月2日凌晨消息,《麻省理工科技评论》(MIT Technology Review)网站今日 ...

2016年值得期待的科技进步之社交机器人

[2016-01-07]     虚拟现实应用空间不断拓展   当前,虚拟现实技术吸引了全世界科技爱好者的极大兴趣。2016年,虚拟现实将逐步走进主流消费者市场,该领 ...