机器人流程自动化(RPA)和人工智能(AI)过去一直被视作相互独立的两个领域——RPA支持者认为AI不实用,而AI爱好者认为RPA太原始——但实际上二者高度互补,相当于大脑和肌肉的关系。企业能够利用RPA实现速赢,同时引进AI战略以实现长期效益和持续优化。
同时利用RPA和AI的做法对服务行业尤为适用,这里的服务行业包括银行、保险和电信等服务行业,也包括财务、人力资源和IT等企业支持性职能部门。
但是,同其他技术一样,RPA和AI并非万能,但若能将二者系统化地
应用于流程及服务组织,则有助于提高产能并产生洞察。要做到这一点,企业需要制定清晰的业务目标,并确定RPA和AI在整体优化工作中扮演的角色。
另外,企业在引进这两项技术时需要制定清晰的变革管理计划,以应对这些技术对组织和运营部门以及员工带来的冲击,避免员工感受到机器人和其他变革性技术的威胁。
自动化:机器人的崛起
最近几年,RPA大获服务型企业的欢迎。通过利用该工具,企业能够用软件机器人替代过去需要人工操作的计算机活动,这些机器人能够打开电子表和数据库、在程序之间拷贝数据、比较信息资料以及执行其他日常任务。RPA最适用于基于规则的重复性流程,而这类流程遍布于多个IT系统。RPA简直就是增强型的宏技术功能。
与人类相比,这些机器人具备多项优势:全天候运行、极少犯错、接受新任务、易于监控且运行速度是人类的五倍。通常,这些机器人能够在一年内收回成本,并帮助企业节省20%-80%的开支,具体节省幅度取决于被替代的人工操作的工作量和复杂度。
RPA能够覆盖于现有IT系统之上,且安装时间短、成本低。但是,RPA的推广如果无合理规划,会导致临时解决方案泛滥,进而威胁到整个IT架构和完整性。
那么,RPA何以成为许多服务型企业的关注焦点呢?首先,供应商能够提供强大且易于操作的 “即时拖放型” RPA软件;其次,企业的应用架构仍过于复杂,需要太多的人工操作。为简化并加速流程,许多企业部署了成百上千个软件机器人。
例如,某电信公司使用机器人将所谓的“旋转椅流程”自动化。过去,该流程需要员工在多个后台遗留系统之间反复转换,而现在机器人能够帮助核实合同条款并管理外勤服务人员。RPA在部署后的一年内能够带来高于成本一倍的回报,在第二年内能带来高于成本两至三倍的回报。
除了带来上述效益,机器人的引进也给电信公司带来了挑战:IT系统要求机器人输入员工验证码;在工会对失业问题表示担忧后,电信公司对受影响的员工重新分配工作。
RPA更大的缺陷在于软件机器人只会遵守规则,不会学习或改进。当规则与现实冲突或发生异常事件时,需要人工干预。某领先家具零售商使用RPA安排送货时间,并将多人同时预订等异常事件交由呼叫中心坐席人员处理。在处理异常事件时,机器人为坐席人员提供完整的历史订单并自动拨号,让坐席人员做好充分准备,随时与客户沟通。
尽管机器人的运行速度比人快,但远远比不上完全自动化的流程。例如,机器人需要打开并登录应用,而自动化程度更高的流程则能够通过系统层面的打通,更加快速的处理任务。
鉴于RPA的种种局限,许多企业决定探寻更具雄心的解决方案,也就是AI。
AI:当计算机学会观察、讲话和思考时
作为计算机智能化的代名词,AI的表现已达到全新的高度,并在业务流程、互动和产品中的应用日益增多。计算机能够处理语言并保留知识,进而与人类进行深入、顺畅的沟通。计算机还学会了“观察”,能够从虚拟世界走向真实世界。所有这些能力对企业未来竞争优势影响深远,而从短期来看,AI至少能够改善三类服务:
数量少时容易,但数量多时繁杂的任务。其中一个例子就是非结构化数据分类,包括从发票中提取信息。来件转发以及姓名地址核对也属于该类任务。
人类无法轻易完成的任务。该类任务包括信用评分、欺诈检测和高频算法证券交易。人类在处理该类任务以及对待特殊情况时依赖于规则,并需要完成一系列繁琐的流程,而这个过程极其缓慢。例如,银行在阻止潜在欺诈性交易时需要快速做决策,而等到人做完决策,交易也许早已受理完成。而机器则不同,其行动速度以微秒计算,且能够通过处理不断膨胀的信息量进行持续学习和改善。
需要人类互动和/或专业知识的任务。该类任务包括客服中心与客户的沟通,以及为客户提供法律建议等。例如,通过遵循一系列规则,或通过观察进而替代人类律师的研究、合规和简单的咨询工作,机器能够监测客户的合规情况。
上述分类并非完美,因为机器的“思考”方式不同于人类,导致前两类任务——代表大多数工作——之间的界限很模糊,但该分类能够为企业服务中的AI应用奠定基础。
许多企业面临AI挑战。通过处理越来越多的数据,机器能够进行归纳性学习,但这种学习过程不会自发进行,而是需要人类对算法进行训练。企业在缺乏AI能力的情况下,通常会求助于供应商,而供应商有时候会过度推销自己的AI产品,最终导致企业的AI试点项目失败(参阅MIT斯隆管理评论2017年发布的报告《
人工智能重塑企业:弥合目标与行动之间的差距》)。
为克服该挑战,某大型保险公司从供应商之外寻求建议,从而了解哪些自动化和AI项目最具有潜力。该公司评估了劳动力和理赔成本、欺诈或超额索赔案件识别能力以及处理该索赔案件对客户关系的影响,同时也明确了运营和IT需求,尤其是新旧系统契合度,并分析了从传统基于规则的方法到先进AI算法的一系列解决方案。
最终,该保险公司决定成立一支内部AI专家团队,负责为某些领域开发透明的算法学习解决方案,而放弃更先进的深度学习方案。该公司表示,对许多其他领域而言,传统的规则驱动型自动化就已足够。
AI应用不限于金融服务,而是适用于所有行业。通过利用AI,零售商和消费品公司能够为客户提供个性化产品,B2B公司能够更有效地进行交叉销售,而工业品公司能够提供预见性维护服务。各类企业均能在风险与合规管理以及IT安全事务中运用AI。
自动化与智能的结合
许多服务型企业开始认识到将RPA与AI结合的优势。通过这种结合,企业既能快速回收RPA成本,又能发挥AI的巨大潜力。这种做法最适合拥有大规模遗留系统的企业,例如金融服务和电信行业,或者企业的人力资源和财务部门。
员工可以同时利用RPA和AI来优化服务流程。对规则驱动型流程的人工干预标志着从自动化到人工智能的自然转移。例如,机器人能够利用光学符号识别技术,将数字化文本发送给人类员工,让人类员工对文本中的日期、地址和主题等信息进行分类。久而久之,AI系统将能够接手此分类工作,随着系统不断改善,人工操作将被逐步替代(参阅图1)。
例如,亚洲某银行将自动化与人工智能相结合,希望以此改善客户体验、加强风险与合规管理并削减成本。该银行已经将许多独立流程数字化,因此而减少了员工数量,但并未就此止步不前。
为取代人工操作,银行安装了能够即时学习的RPA和AI系统,该系统能够将不确定如何处理的任务转交给人类员工。仅四周内,AI系统就达到了50%的准确度,并最终超越了人类员工。
通过上述自动化和智能转型,银行将成本削减了20%,并将某些流程的时长从几天缩减到了几分钟。此外,银行还积累了自动化和AI模块数据,能够在其他场景中重复利用。
从经济角度而言,将所有的服务自动化并非合理之举。但是,即使是在更为复杂的情况下,企业也能通过对某些活动进行预处理,将人类工作量降低80%,甚至更多。
准备行动
企业在引进自动化和人工智能时要做到条理清晰并考虑周全,避免掉入供应商设下的陷阱或犯下常见的错误(参阅图2)。
价值创造离不开战略。企业需要对自动化和人工智能的风险和回报有着客观的见解,并对自身目标有着清晰的认识。整体RPA和AI战略及目标制定应该服务于重点业务的发展,并反映出企业对新兴科技的成熟度和颠覆潜力的清晰认识。
进步离不开设定优先目标。企业需要客观评估RPA和AI项目的当前进展,并全面寻找机遇。企业还需要分析如何利用内部和外部数据,并发挥智能机器的速度和规模。为避免短视,分析工作不能凭空开展,而是要根基于企业正在进行的一系列效率改善和其他优化工作。
在设定工作优先级时,一种合理的做法就是用热点图捕捉分布于各类相关产品和流程的RPA和AI机遇,用绘图的方式交叉对比业务价值和技术可行性。企业应首先找到改进潜力最大的领域,然后客观评估当前各项技术的能力。除此以外,企业在执行过程中还要采取端到端视角。例如,某企业急于将一些零散的工作自动化,却不知道这种做法既不会减少员工数量,也不会改善企业绩效。
成功离不开试点。企业在设计试点项目时要记住,完美并非来自实践,而是来自完美的实践。如果企业只是随机开展试点,就可能会从中吸取错误的教训。例如,某企业没有采取端到端做法,导致其在价值链中间安装的机器人给前后端造成了很大负担。
实现目标离不开路线图。企业应从优先级的设定和试点运行中获取洞察,并将洞察组合起来制定一张全面的RPA和AI路线图。我们总是会看到,一些实验由于缺乏透明度、有效的协调和指导而无法达到期望值。企业制定的时间表和计划需要全面考虑技术、组织、人员和运营模式的根本变化。项目发起人——最好是高层领导——应对转型工作进行监督,因为成功始于高层。
成功离不开数据与技术的整合。在遗留系统的基础上安装简单的RPA系统是一件很容易的事情,但是随着自动化和智能程度增加,系统安装难度也会提高。企业必须确保新系统能够与呼叫中心和其他服务中心无缝整合,企业还需要成立绩效中心来管理整体自动化和人工智能活动。并且,随着企业向AI迈进,它需要获取大量内部和外部数据。鉴于外部供应商提供整合的能力层次不齐,企业有必要对外部供应商进行深入评估。
自动化和AI的应用离不开新的运营和治理模式。自动化和人工智能改变了企业的工作性质和盈利格局,进而对服务的组织和交付方式带来了深刻的影响。尽管有人声称自动化削弱了共享服务中心的重要性,但它仍然是企业运作中的重要一环。过去,许多共享服务中心位于工资水平较低的地区,目的是利用劳动力套利;未来,共享服务中心的职责将变得更具战略性,更倾向于数字化能力建设、客户服务、数据分析和决策支持。
从宏观角度而言,企业AI应用的兴起会冲击传统组织架构和流程设置。由于持续学习成为了人机互动的主题,职能和技术团队不得不采取敏捷工作方法以加强合作。AI和敏捷性的本质均为迭代,对它们而言,任何产品和流程均为连续的循环。算法从过去的成果中吸收经验,而敏捷团队从过去的快速原型设计和反馈中获取教训。
最终,企业也许会向“自动化和智能化第一”的方向前进,一如曾经多渠道话题中的“移动第一”口号。这种对绩效和效率的不懈追求将释放劳动力,让更多人参与下一轮的服务改进工作。
自动化和AI的成功离不开变革管理和能力建设。自动化和人工智能的引进必然会遇到阻碍。在自动化和人工智能的应用过程中,企业可能会面临来自员工和高管的阻挠,因为员工会担心保不住饭碗,而高管会满足于现状。最终,员工和高管都会认识到,要抓住不断更替的机遇,就需要掌握新技能。
即使不会威胁员工就业,企业在引进自动化和人工智能时也会面临挑战,因为管理者不熟悉如何同时管理人与机器。企业也许懂得如何向员工传播变革,但不一定能够解决员工在情感上对自动化的抵触。
而这种抵触可能来自IT部门,这一点可能出乎企业的预料。IT员工也许愿意接受新技术,但不一定适应敏捷工作的模式,亦或两者都不接受。
除了管理员工的反应,企业还需调整自身能力以满足两项要求。首先,企业需要招募掌握现代技术的员工,以应对激烈的竞争。为解决人才短缺问题,企业可以考虑集中式地管理AI资源,至少可以在初期采取这种做法。其次,企业需要为面临失业的员工提供培训,为其分配新职责。增强现实技术能够帮助这些员工转型,同时最大程度上减少新技术培训。
印度的业务流程外包商在引进自动化和人工智能时已经历上述挑战。其中一家外包商向我们透露,它们每季度帮助数千名员工从传统岗位转移到新岗位,并为逾十万名员工提供设计思维方面的培训,该培训旨在帮助员工构建创意,并运用这些创意改善客户服务。
RPA与AI的结合既是机遇也是挑战。企业能够通过开展速赢项目抓住该机遇,但也需要思考如何利用RPA和AI在未来更艰难的环境下茁壮成长。正如老子所言:“千里之行,始于足下。”