爱吧机器人网 » 资讯 > 企业 > 正文

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮

在今年的谷歌I/O大会上,除了安卓P之外,谷歌还发布了非常重要的硬件:TPU3.0。这是这家科技巨头第三次发布新版本的机器学习专用处理器。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
AI开销大,谷歌已Allin

人工智能需要大量的计算资源进行训练。但是这个规模有多大?很多人是没概念的。对于大公司来说,对资源的要求非常高,尤其是神经网络,比如谷歌I/O大会大放异彩的安卓电池节约模式和自动亮度调整,就是Deepmind的产品,Deepmind在官方新闻并未透露让手机学习这些行为需要多少资源,但是在围棋项目上可以窥探一下。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
2000个P100运行两三周才能训练出强大的围棋程序Deepmind训练AlphaGoZero的时候,2000个TPU跑了40天。AlphaZero训练则是调用了5000个TPU。写成论文之后,Facebook在重现论文的时候,则是使用了2000个GPU运行了两三周的时间,这个GPU都是英伟达的P100,一个8GPU的学习服务器英伟达就要卖到上百万人民币。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
TPU:每小时6.5美元,训练AlphaGo要数百万美元

让巨头们狠下心来自己搞AI硬件的动力来自多个方面,一来谷歌自己做针对TensorFlow优化的TPU效果好,二来现在谷歌云都可以租赁分时使用TPU资源了,对于擅长硬件或是云计算的科技巨头们来说,是时候发展自己的AI硬件了,这正在成为大公司的游戏。

CPU在任务处理器里出现两个核心,可以追溯到十多年前的奔腾四时代,刚刚出现的HyperThreaing技术。不过很多年过去,由于CPU的单个核心任务繁重,所以就算是服务器的版本,核心数也不过20多个就基本到头了。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
GPU更多的核更适合机器学习和AI在神经网络出现之后,要用计算机系统去模拟更多的人大脑的神经元,这样神经网络在训练的时候对资源的开销非常大。因为神经网络的特点是节点多,这对于核心不多的CPU来说就需要非常大的服务器集群。但是当时人们发现了显卡,单个显卡上面有很多个单元,正好适合训练人工智能的神经网络。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
在TitanV当中,英伟达加入了640个张量单元用来加速AI训练速度

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
英伟达的股票过去几年成为投资热点,暴涨了数倍而神经网络单个节点并不需要多高的计算能力,这让显卡企业英伟达迅速的推出了针对神经网络、机器学习专用的GPU,过去几年英伟达的股价暴涨数倍。科技巨头们采购的GPU往往以万计,只有这个规模才能满足他们对于探索的需求。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
DGX-2可以支持单机16个V100GPU现在英伟达成为了业内最大的机器学习GPU的供应商,并且英伟达自己也提供DGX系列机器学习服务器,今年的新款可以单机支持16个GPU,过去是8个。可以说英伟达是AI时代最大硬件赢家也不为过。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
赢家自信的微笑这里我们回到开头,Facebook训练围棋程序ELF用了多少个GPU?2000个!英伟达总裁黄仁勋还可以笑很久很久。

谷歌最早的GoogleBrain搞机器识图的时候,就是大规模的GPU集群。据说曾经用力上万张GPU来进行学习训练。因为GPU并没有针对性的对谷歌的TensorFlow框架进行优化。而到了和李世石下围棋的版本,则已经开始使用自己的TPU,但是多达50个。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
谷歌完整经历了从CPU到GPU再到TPU的流程到了与柯洁下棋的时候,可以看到机器已经变成了只要一个4U左右的4TPU服务器就可以,这就是专用芯片的威力,对于AI和神经网络,专用芯片的效率提升是指数式的,而不是线性的几个机架缩小到1个。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
TPU2.0:四个一张PCB,算力可以达到180TFlops谷歌的TPU全称叫做TensorProcessingUnit,张量处理单元,它针对谷歌的深度学习框架TensorFlow定制开发,TPU推出只有8位的低精度计算,并且有不小的板载内存以减少对内存的访问,但是优化后可以极大的提高机器学习的效率。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
TPU3.0的高功耗不得不用上水冷散热

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
图片下面8个互联机架有每秒1000万亿次的能力与柯洁下棋的是TPU二代,四个TPU有180TFlops的计算能力。而这两天的谷歌I/O上则推出了TPU3.0版本,功耗进一步加大,使用了水冷。根据谷歌CEOPichai的话说,要比过去快十倍以上:这其实说的是一整个集群模块,可以达到100PFlops,也就是所说的每秒1000万亿次。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
TPU只是对TensorFlow优化当然TPU不是万能的,它针对的是谷歌的学习框架,而Facebook的学习PyTorch框架基本就没法用,所以目前来说还只是针对性的硬件。

谷歌的TPU本质上是ASIC,当然机器学习不止一条路,微软就在5月7日的Build2018大会上,宣布了ProjectBrainwave的预览版,这其实比谷歌的I/O还早了几天。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
微软押宝FPGA

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
微软ProjectBrainwave团队负责人DougBurger展示FPGA模块微软押宝的是FPGA(现场可编程门阵列FieldProgrammableGateArray,简称FPGA),微软始终认为FPGA更灵活,可以适应多种机器学习的类型。微软还声称,FPGA可以使用图形识别模型每1.3毫秒就识别一张图片,而根据微软CEOSatyaNadella的演讲,FPGA的延迟要比TPU低5倍。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
近看FPGA,可以插在全高的PCIE服务器模块上加速AI和深度学习计算微软的FPGA灵活性在于不仅仅支持TPU支持的TensorFlow,也支持微软自己的人工智能认知工具包,前面说的识别图片就是最基础的人工智能应用之一。与谷歌云支持TPU差不多,微软也即将在Azure云中支持FPGA的人工智能、机器学习加速。

最近关于国产半导体的事情闹得沸沸扬扬。其实半导体这种成熟的工业,要追赶的路还很长,不要妄自菲薄,也不要有点成绩就沾沾自喜嚷嚷赶英超美才是正确的态度,路是一步一步走出来的。最近国内的芯片领域的领军企业、具有深厚中国科学院背景的寒武纪就推出了MLU。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
寒武纪的成品模块与芯片MLU造型上和英伟达标准版的显卡有点像,也是在PCB后部用一个涡轮风扇横向吹风散热的结构,这种结构成熟,可以很容易的放到机箱里面。当然我们更关心的是性能。根据寒武纪官方公布的数字,INT8模式下最高可以达到166.4TFLOPS,大概和谷歌的TPU2.0性能相当。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
寒武纪会成为中国的英伟达吗?MLU和GPU一样,都相当灵活,可以容易的放到机箱、服务器里面起到专门的AI加速作用,并且MLU的工艺是TSMC的16nm,估计未来国内很多AI领域的研究会围绕MLU展开。

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
机器学习硬件的应用场景,分学习和应用推理两部分

谷歌爸爸放大招:如何追赶人工智能硬件的浪潮
谷歌助手号称已经通过了图灵测试,分辨不出AI与真人的区别今天列举的只是众多的AI硬件当中的几个,还有大量获得千万美元以上风投公司的AI硬件在路上,烧钱背后是人们意识到了AI同过图灵测试之后展现的强大,尤其是谷歌I/O大会上的谷歌助手,让人分辨不出就是是人还是机器。但无论如何,硬件越强大、AI越智能,越能解放我们的双手和劳动力,让真正的大脑投入到思考当中。


上一篇:博世、戴姆勒和英伟达结盟开发无人驾驶出租车
下一篇:华为正准备大力推动人工智能硬件的发展
精选推荐
美国普渡大学研发快动作软体机器人,灵感来自变色龙舌头捕食
美国普渡大学研发快动作软体机器人,灵感来自变色龙舌头捕食

[2019-10-31]  本文图片均来自:Ramses v Martinez 普渡大学变色龙、蝾螈和许多蟾蜍利用积蓄的弹性能量,向距离1 5倍体长的毫无防备的昆虫伸出粘糊糊的舌 ...

智能机器人困惑的时候知道该问什么问题
智能机器人困惑的时候知道该问什么问题

[2017-03-20]   照片:Nick Dentamaro 布朗大学 上周,我们提到了麻省理工学院的一些研究,即通过链接人的大脑来帮助机器人在他们将要犯错误的时 ...

2018年企业数字化转型的五大趋势
2018年企业数字化转型的五大趋势

[2017-12-16]  据2016年哈佛商学院研究表明,选择进行数字化转型的企业在3年内表现出了55%的平均毛利润提升,相比之下其他企业毛利润同期降低了37%。数字化转型企业的领头羊,也曾是收入处于......

人工智能准确预测患者一年内的死亡风险,原理却无法解释
人工智能准确预测患者一年内的死亡风险,原理却无法解释

[2019-11-13]  图片来自BURGER PHANIE SCIENCE PHOTO LIBRARY美国最新研究显示,人工智能通过查看心脏测试结果,以高达85%以上的准确率预测了一个人在一 ...

农业将为高科技行业 农业机器人的应用领域
农业将为高科技行业 农业机器人的应用领域

[2017-12-17]  农业正在迅速成为一个令人兴奋的高科技产业,吸引了新专业人士,新公司和新投资者。技术发展迅速,不仅提高了农民的生产能力,而且促进了我们所知道的机器人和自动化技术的发展。...

Waymo:人性和行为心理学才是无人驾驶最大的挑战
Waymo:人性和行为心理学才是无人驾驶最大的挑战

[2019-11-03]  自动驾驶汽车作为AI领域内最大的挑战之一,谷歌致力于其研发已有十余载,现在他们逐渐意识到,最困难的是如何让人们享受驾驶的乐趣。这是一 ...

美国喷气推进实验室的AI驱动无人机挑战人类飞行员
美国喷气推进实验室的AI驱动无人机挑战人类飞行员

[2017-12-08]  随着无人机及其组件越来越小,效率越来越高,功能越来越强大,我们已经看到越来越多的研究开始让无人机自主飞行在半结构化的环境中,而不依赖于外部定位。 宾夕法尼亚大学在......

英伟达用联合学习创建医学影像AI 可共享数据和保护隐私
英伟达用联合学习创建医学影像AI 可共享数据和保护隐私

[2019-10-14]  英伟达(Nvidia)和伦敦国王学院(King’s College London)的人工智能研究人员利用联合学习训练了一种用于脑肿瘤分类的神经网络, ...

本周栏目热点

将NLU技术引入企业服务领域,ForeTHought获900万美元A轮融资

[2018-12-07]  近日, ForeTHought宣布已经获得了由New Enterprise Associates领投的900万美元A轮融资,该公司希望将NLU技术引入企业领域,致力于帮助“知识类专员”,例如客户服务代表等......

星逻智能发布无人机综合操作系统UltraHive Mk 3“启”

[2019-07-10]  6月20-22日,2019世界无人机大会在深圳隆重举办,来自国内外的四百多家企业参会,千余架无人机精彩亮相。为赋能无人机而生的星逻智能自然不 ...

娃哈哈自主研发机器人 定位精度可达0.1毫米

[1970-01-01]    说到企业,政府扶持政策是一方面,但是企业能不能国强还得看企业本身能否自主创新。如今,很多企业都在试行机器换人实现生产的自动,现 ...

GoodNews:哈工现代 · 51CLOUD联合打造工业机器人智能云服务平台

[2020-03-24]  智能物流、智能家居、智能汽车……"智能云"服务已覆盖生活的方方面面;那么在制造业领域,有没有一种解决方案,能够综合运用大数据、云计算 ...

[2015-12-14]     12月12日,博林特公告,公司已完成工商变更登记手续,正式变更为沈阳远大智能工业集团股份有限公司,证券简称由博林特变更为远大智能。 ...