爱吧机器人网 » 专题 > 观点 > 正文

人工智能+医疗为何如此受资本青睐 人工智能能否攻克医疗难题?

在 2018 年,仅前十大制药公司将创造超过三千亿美元的收入。与此同时,目前需要 10 年时间才能将新药推向市场,同时花费超过 25 亿美元(有时高达 120 亿美元)。即使进入 I 期临床试验的 10 种药物中,有 9 种不会进入市场。

人工智能+医疗为何如此受资本青睐,人工智能能否攻克医疗难题?
随着人口老龄化,我们无法依赖这种低成功率、高成本的方式。到 2030 年,世界人口中约有 12% 的人口年龄在 65 岁及以上,像老年痴呆这样的「衰老疾病」将对社会构成越来越大的挑战。

随着人工智能与大量医疗数据结合使用,新药的研发将更加便宜和迅速,同时更加智能化。我所了解的该领域最热门的创业公司之一是 Insilico Medicine,利用人工智能在其端到端的药物管道中,通过对药物的研究,从而讨论未来长寿与健康的秘诀。

案例研究:利用 AI 进行药物探索

你可能已经了解过深度神经网络:人造神经元的多层网络,能够从大量数据中「学习」并且能够为自己做基本的编程。

人工智能+医疗为何如此受资本青睐,人工智能能否攻克医疗难题?
建立在深度神经网络的基础上,将生成对抗网络(GAN),这是支持 Insilico 药物发现渠道的革命性技术。

什么是 GAN?「GAN 技术本质上是两个深层神经网络之间的敌对博弈,」Alex 解释说。

Alex 的最终目标是开发一个全自动的健康即服务(HaaS)/长寿服务(LaaS)引擎。一旦插入阿里巴巴公司到 Alphabet 公司的服务,这种引擎将为在线用户提供个性化解决方案,帮助他们预防疾病并保持最佳健康。

Insilico 的端到端管道

首先,Insilico 利用 AI(以 GAN 的形式)来确定目标(如下面的管道的第一阶段所示)。为此,Insilico 使用来自健康组织样本和受疾病影响者的基因表达数据。(目标是药物打算作用的特定病理学中涉及的细胞或分子结构。)

人工智能+医疗为何如此受资本青睐,人工智能能否攻克医疗难题?
仅此一项就可以实现医疗保健和医学研究的突破。但真正作用并不止于此。

在了解衰老过程中潜在的机制和因果关系之后,Insilico 使用 GAN 来「想象」新的分子结构。通过强化学习,Insilico 的系统以前所未有的方式识别目标,然后从头生成自定义分子,从而达到这些特定目标。

在规模上,这也将涉及药物的副作用最小化,这是 Insilico 科学家 Polina Mamoshina 与牛津大学计算心血管团队合作开展的一项研究。

虽然仍处于发展的早期阶段,但准确的临床试验预测指标将使研究人员能够确定理想的临床前候选人。

从今天的情况来看,这是对于行业效率 10 倍的改善。

目前,通过传统技术发现并在小鼠身上测试的超过 90%的分子最终在人类临床试验中失败。准确的临床试验预测结果将导致药物测试成本,时间和开销大大削减。

药物发现

药物发现的数字化和非物质化变革已经发生。机器学习推动药物发现和分子生物学方面产生突破性进展,随着计算能力的提高,将以更低的成本,更惊人的速度向市场推出新的治疗方案,并且不需要大规模的基础设施建设和投资。

除量子计算的预期突破之外,我们将很快见证可预测分子数量的爆炸式增长,同时准确性大幅提升。

总结

人工智能技术的发展将在未来改变医疗行业效率低下、创新迟缓的问题。无论处于何种行业的人,大制药都是一个值得关注的领域。融合技术很快能够在长寿和疾病预防方面取得长足的进步,像 Insilico 这样的创业公司领导着行业变革。

在大规模数据集、不断提升的计算能力、量子计算、区块链及人工智能的等创新因素推动下,人类的健康状况及长寿的未来确实值得期待。

技术将比人类想象力更快的实现商业化,当询问 Alex 对行业的预期时,他的时间安排是二十年。

可能他的预测是保守的。

我的朋友 Ray Kurzweil 经常讨论「长寿逃逸速度」这个概念,即在你活着的每一年,科学都能够延长你的寿命超过一年。

Ray 的预测准确率达到了 86%,「这可能仅仅是大众还需要 10 到 12 年才能达到长寿逃跑速度。」

你将怎样使用生活中额外的 20 年或更多的健康年?


上一篇:数字化生产将为减速器带来什么?
下一篇:SCARA协作机器人为何在市面上凤毛麟角
精选推荐
为未来战场创造更有效的机器人 美国陆军研究人工纳米马达
为未来战场创造更有效的机器人 美国陆军研究人工纳米马达

[2019-10-11]  为了使机器人在战斗中更有效、更多才多艺地成为士兵的战友,美国陆军研究人员正在执行一项任务,即研究肌肉分子生命功能的价值,以及复制过 ...

机器人灵巧手将成为智能机器人的下一个重大突破
机器人灵巧手将成为智能机器人的下一个重大突破

[2018-01-25]  计算机科学教授兼东北地区助手机器人实验室负责人罗伯特·普拉特(Robert Platt)说:“机器人手操作是下一步要解决的问题。想象一下,一个机器人可以在现实世界中用手去做事......

Waymo:人性和行为心理学才是无人驾驶最大的挑战
Waymo:人性和行为心理学才是无人驾驶最大的挑战

[2019-11-03]  自动驾驶汽车作为AI领域内最大的挑战之一,谷歌致力于其研发已有十余载,现在他们逐渐意识到,最困难的是如何让人们享受驾驶的乐趣。这是一 ...

2022年全球工业机器人市场将达到790亿美元
2022年全球工业机器人市场将达到790亿美元

[2017-09-04]  预计到 2022年, 全球工业机器人市场将达到790亿美元, 并在预测期内登记11 5% 的复合年增长率。随着发展中国家中小型企业需求的不断增长, 采用自动化技术以确保生产质量......

揭秘达芬奇手术机器人
揭秘达芬奇手术机器人

[2018-04-19]  达芬奇手术系统是由美国Intuitive Surgical公司制造的机器人手术系统。美国食品和药物管理局(FDA)于2000年通过该标准,旨在利用微创手段 ...

谷歌大脑发布ROBEL基准 鼓励用低成本机器人训练AI系统
谷歌大脑发布ROBEL基准 鼓励用低成本机器人训练AI系统

[2019-10-11]  训练AI系统的机器人D& 39;Claw和D& 39;Kitty用于控制机器人的人工智能系统,测量其性能所使用的基准通常仅限于为工业环境设计的昂贵硬件, ...

17世纪的莱布尼茨试图制造“思想机器”却被现实打脸
17世纪的莱布尼茨试图制造“思想机器”却被现实打脸

[2019-11-05]  莱布尼茨,德国哲学家、数学家、律师,历史上少见的通才1666年,德国博学家戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz)发 ...

研究人员融合人类与AI的创造力 显著提高了深度学习的表现
研究人员融合人类与AI的创造力 显著提高了深度学习的表现

[2019-10-12]  由加拿大人工智能领域研究主席、滑铁卢大学系统设计工程教授Alexander Wong领导的一个团队开发了一种新型紧凑型神经网络家族,可以在智能 ...

本周栏目热点

2020年中国AI基础数据服务行业发展报告

[2020-04-03]  核心摘要:目前人工智能商业化在算力、算法和技术方面基本达到阶段性成熟,想要更加落地,解决行业具体痛点, 需要大量经过标注处理的相关 ...

[1970-01-01]    从首尔清潭洞SM娱乐公司大楼代表办公室的落地窗可以清晰地眺望对面的汉江。李秀满会长介绍拥有代表办公室和录音室的建筑物是工作室中心 ...

[1970-01-01]    虽然我国经济增速下降,通缩若隐若现,但由于我国劳动力人口在2012年已经达到顶峰,之后总量呈逐年下降之势,所以即使近几年产业工人工 ...

腾讯思享会:探讨智能社会与人类未来

[1970-01-01]    人类在享受开车的过程时,在不久的将来可能让机器开车,人类如不是理性的控制机器人,又将一场持久的大战。  以智能社会与人类未来为 ...

[1970-01-01]    机器人发展到今天到了重新定义的时候,机器人拥有人类的感知和思维、应用到更多领域,成为现代机器人产业发展的新方向,由此看出中国机 ...