爱吧机器人网 » 专题 > 观点 > 正文

高效的人工智能需要可观的数据摄入

我们来探索一下数据的坚实基础如何实现更少人工参与而更智能的人工智能。

\
 
在当前的技术领域,没有什么能像人工智能(AI)那样使人好奇和兴奋。我们才渐渐看到企业内人工智能应用程序的潜在好处。
 
然而,因为数据科学家往往无法获得建立高效人工智能模型所需的相关数据,企业中人工智能的发展受到了阻碍。这些数据专家往往只能依赖一些已知的来源,如现有的数据仓库,而不能利用他们所需的所有实时的,真实的数据。此外,很多公司费了九牛二虎之力才能高效且经济地左右海量数据的业务环境和质量。有鉴于这些困难,人们不难理解人工智能的加速和采用所面临的一些历史障碍。
 
数据最终仅对人工智能有用——或在其它情况下有用——只有当你理解它时才成立。具体而言,这意味着你要了解它的背景和重要性。只有这样,你才能放心大胆地用它来训练人工智能模型。实现这一目标的唯一方法具备“智能数据”的根基。
 
多年来,我们所做的不仅仅是数据的收集和聚合,目的是推动特定的业务应用程序(数据1.0),由于数据的数量、种类和速度继续暴涨(数据2.0),组织已经能够创建明确的流程,让所有人都能使用数据。但这还远远不够。我们现在已经到了这样的程度——人们需要智能数据才能真正为企业范围的转型提供动力(数据3.0)。
 
例如,试想一下一家公司重新定义其与客户群的传统关系所面临的难题。假设你是一家生产剃须刀片的公司,其目标是通过订阅而非柜台直接交易的方式销售刀片。指导这种颠覆性变革需要来自数据源(数据库,数据仓库,应用程序,大数据系统,物联网,社交媒体等)的输入,需要各种数据类型(结构化的、半结构化的和非结构化的)和不同位置(本地的、云端的,混合的和大数据)。又或者,如果你是一家重型设备制造公司,该公司要确保你可以实时处理车间和机器人的所有数据,以预测所有的停机时间,同时保持定期维护,以避免可能耗费数百万美元的运营停机时间。
 
数据湖泊正在成为这样的变革性事业所需的大量不同数据的首选存储库。但没有智能数据,这些湖泊则无甚价值。Gartner估计,到2018年,竟有90%的数据湖泊变得毫无用处,因为它们充斥着鲜有人能够使用的原始数据。(“元数据能在数据湖泊中获得目标数据。”)
 
相比之下,有了智能数据,数据科学家就可以对“客户”这样的词进行类似谷歌一样的搜索,并立即发现相关数据的所有可能来源。智能数据可以节省大量宝贵的时间,不然数据科学家可能不得不花费大量时间来收集、组装和改进模型所需的数据。智能数据还能实现最可靠的成果。
 
那么你如何确保数据真正实现智能化?方法就是构建端到端的数据管理平台,该平台本身就使用机器学习和人工智能功能,由广泛的元数据驱动,以提高平台的整体生产力。元数据是挖掘数据价值的关键。
 
如果你想确保自己能提供全面、重要且准确的数据来实施人工智能,那么你需要考察四种不同的元数据类别:
 
1. 技术元数据:包括数据库表和列信息以及有关数据质量的统计信息。
 
2. 业务元数据:定义数据的业务情境以及它参与的业务流程。
 
3. 操作元数据:有关软件系统和流程执行的信息,例如,它们会指示数据新鲜度(data freshness)。
 
4. 使用元数据:有关用户活动的信息,包括人们所访问的数据集,评级和评论。
 
应用于此类元数据的人工智能和机器学习不仅有助于发现和推荐正确的数据。这样的数据也会自动得到处理而无需人工干预,使其适用于企业人工智能项目。
 
数字化转型迫使组织以不同的方式审视数据,问题是组织想变成“老鹰还是小鸡”。如今,人们可以随时使用实时的、始终可用的数据和工具,使快速分析成为可能。这推动了人工智能和机器学习的发展,使过渡到数据优先的方法成为现实。由于数字化、数据爆炸以及人工智能对企业的革命性影响,人工智能的复兴正在蓬勃发展。
 
显然,有无数的数据输入可能影响人工智能应用程序的决策,因此组织需要对相关且有影响力的内容进行分类,以及什么是噪声。在你的组织采用人工智能驱动的数据管理方法之前,请考虑以下问题:
 
• 你希望通过人工智能技术实现什么样的目标?
 
• 你是否有合适的数据策略来助力人工智能驱动的决策?
 
• 你具备合适的技能了吗?
 


上一篇:人工智能加速向行业渗透 我们距离AI时代还有多远?
下一篇:专家:人工智能预计将在四方面取得突破
精选推荐
人工智能准确预测患者一年内的死亡风险,原理却无法解释
人工智能准确预测患者一年内的死亡风险,原理却无法解释

[2019-11-13]  图片来自BURGER PHANIE SCIENCE PHOTO LIBRARY美国最新研究显示,人工智能通过查看心脏测试结果,以高达85%以上的准确率预测了一个人在一 ...

苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展
苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展

[2017-12-11]  苹果隐秘的自动驾驶汽车项目多年来一直在转移焦点,但今年似乎正在加速。 4月份,公司获得了在加利福尼亚州进行自动驾驶汽车测试的许可证,而在6月份,苹果公司首席执行官库......

科学家从蟑螂获得启发 教机器人更好地走路
科学家从蟑螂获得启发 教机器人更好地走路

[2017-12-11]  Weihmann指出:“我特别感到惊讶的是,动物运动稳定机制的变化与腿部协调的变化是一致的。昆虫的慢运行非常稳定,因为它的重心很低,三条腿总是以协调的方式运动。...

美国人工智能公司Skymind进入福建全面开展业务
美国人工智能公司Skymind进入福建全面开展业务

[2017-12-11]  人工智能在当今这个时代对大家来说想必是非常熟悉的,这也是我国近十几年来一直追求的目标,未来的时间里这也将是全人类追求的目标。就目前来看,近年来,人工智能或在我国迎......

谷歌在中国成立一个新的人工智能(AI)研究中心
谷歌在中国成立一个新的人工智能(AI)研究中心

[2017-12-13]  谷歌正在中国建立一个新的人工智能(AI)研究中心,希望进一步扩展到中国,以充分利用中国高度重视的人工智能技术。人工智能是目前地球上最具竞争力的领域之一,亚马逊,微软......

英国首台月球车是个小型四腿机器人 将于2021年登月
英国首台月球车是个小型四腿机器人 将于2021年登月

[2019-10-12]  探测器将用四条腿探测月球表面,并将数据传回着陆器,后者将把数据传回地球图 詹姆斯温斯皮尔英国即将成为继美国、俄罗斯、中国之后的又一 ...

什么是机器人学?机器人学简介
什么是机器人学?机器人学简介

[2017-12-14]  机器人学是工程学与科学的交叉学科,包括机械工程,电气工程,计算机科学等。机器人技术涉及机器人的设计、制造、操作和应用,以及用于控制、感官反馈和信息处理的计算机系统。...

这个外科手术机器人可以为患者“量身定制”
这个外科手术机器人可以为患者“量身定制”

[2019-07-12]  世界首创,来自澳大利亚机器人视觉研究中心的研究人员正在推动手术机器人的发展边界,他们创造了可定制的、小型化的手术机器人,能够唯一地 ...

本周栏目热点

2020年中国AI基础数据服务行业发展报告

[2020-04-03]  核心摘要:目前人工智能商业化在算力、算法和技术方面基本达到阶段性成熟,想要更加落地,解决行业具体痛点, 需要大量经过标注处理的相关 ...

[1970-01-01]    从首尔清潭洞SM娱乐公司大楼代表办公室的落地窗可以清晰地眺望对面的汉江。李秀满会长介绍拥有代表办公室和录音室的建筑物是工作室中心 ...

[1970-01-01]    虽然我国经济增速下降,通缩若隐若现,但由于我国劳动力人口在2012年已经达到顶峰,之后总量呈逐年下降之势,所以即使近几年产业工人工 ...

腾讯思享会:探讨智能社会与人类未来

[1970-01-01]    人类在享受开车的过程时,在不久的将来可能让机器开车,人类如不是理性的控制机器人,又将一场持久的大战。  以智能社会与人类未来为 ...

[1970-01-01]    机器人发展到今天到了重新定义的时候,机器人拥有人类的感知和思维、应用到更多领域,成为现代机器人产业发展的新方向,由此看出中国机 ...