人工智能的浪潮已经席卷全球,成为各国经济发展的重要驱动力,但人才缺乏现已成为制约其发展的最关键因素。据腾讯研究院发布的《2017全球人工智能人才白皮书》,国内目前有39200位AI从业人员,但是对于AI人才的需求数量已经突破百万,供需严重失衡。仅在2017年的前10个月内,AI人才需求量已经达到了2016年的近两倍,人才需求直线上升年复合增长率超200%。
AI人才需求趋势
当下,人工智能人才的巨大缺口,主要通过三种方式缓解:海外人才引进、高校加大培养、传统人才转行。
海外人才引进,一定程度上缓解了AI顶尖人才的极度匮乏情况,但无法满足社会对普通AI人才更为广泛的需求。
高校对AI人才的培养,是解决问题的根本,但通常需要6-8年的筹备与探索期,才会逐渐形成稳定的人才输出。今年4月,教育部为响应国务院号召,发布《高等学校人工智能创新行动计划》,计划中明确提出:加强人工智能领域专业建设,到2020年建立50家人工智能学院、研究院或交叉研究中心。但是由于国内高校的AI起步较晚,师资力量较为欠缺,目前还未形成系统的课程培养体系,难以很快填平AI人才缺口。
上述两种方式的尴尬现状,均不能在短期内缓解AI人才市场的需求。供需严重不平衡的现状,使得AI从业者薪水普遍数倍于传统行业!
AI岗位薪资
同时,入门AI并非难以企及之事(具备扎实的数学和编程基础,掌握好入门方式),使得传统行业人才纷纷转行人工智能。据调查统计,高达48%的程序员打算在2018年学习人工智能,为转行做准备。
转行人工智能的程序员
转行人工智能的第一步:机器学习
人工智能是一门多学科交叉的综合性前沿学科,包括专家系统、机器学习、进化计算、模糊逻辑、计算机视觉、自然语言处理、推荐系统等诸多领域,每个领域都对应诸多垂直方向的招聘岗位。
人工智能研究分支
机器学习是当下实现人工智能的主流方法,因此“入门人工智能”可以先从入门机器学习入手。在我们学习机器学习算法时,往往会遇到以下两种情况:(1)算法的数学推导吃力,无法理解具体核心参数表示的物理意义;(2)弄懂算法原理后,面对实际问题,依然不知道如何利用算法解决。久而久之,学习积极性消失殆尽,从入门变为放弃。
造成这种普遍现象的原因在于,
学习者数学基础不扎实、
实践经验不足。数学基础不扎实,无法推导算法的数学公式,进而不能深入理解算法的核心思想。
数学对于机器学习的重要性
学习机器学习最重要的基础是数学和编程。对于普通程序员,C++/Python等编程能力比较强,但数学基础比较薄弱。恰恰,数学作为表达与刻画机器学习模型的工具,是深入理解机器学习算法原理的基石,也是算法创新的基础技能。
当下,无论是科研院校AI方向的研究生招生,还是AI企业技术岗位招聘,都明确说明数学专业的优先,可见数学之重要。
企业招聘要求