另外一种观点,即机器人具备部分的人工智能,我们称之为“弱人工智能”,它在某个不确定性的环境下能够做一些事情。具备部分智能的机器人是目前工业界的主流观点,只要能产生实实在在的智能,就有价值了。
关于什么是人工智能,大家常常有哲学思辨的热情。历史上有一个著名的讨论,叫做“思想实验”,它讲的是:一个房间里面关着一个英国人,从来不知道中文和中国的任何事情,然后房间的桌子上面有一本书让他认知,这时从门外递进一张英文的条子,让他到神奇的书里面查阅后写出一份中文的翻译,结果他写出来了。这看起来这很智能,但是这个英国人并不懂中文,他写出翻译这个外表的行为是不是他内在真正的智能呢?行为上面表现的智能并不是真正的智能。我个人认可另外一种回答,也就是这个英国人不懂中文,但是“英国人+书+房间”,这个系统是智能的。
什么是Robot?我们中文把它翻译成机器人,我认为这个翻译是有误导性的,不够准确。剑桥辞典的翻译是:“在计算机控制下具有自主行为的机器”。我们再看Android(安卓),它的意义是:“长得像人的robot”,也就是Android才应该翻译成机器人。什么是robot?什么是普通的machine(机器)?
按照确定性和固定的程序进行操作,具备一致性的产品是机器,在传感器指引下能够感应、自适应不确定性环境的机器,就是robot,它具有很大的市场,已经有一大批的公司拥有了大市值。工业4.0会讲到C2M(顾客对工厂),用户的个性化订单直接反映到工厂生产,每个商品背后是具体的用户订单需求,在这种情况需要强大的robot流水线。
在大城市,你永远面对不确定性的车况,如果一个机器能够自主地驾驶,在不确定的环境中去捕捉瞬间的变化,然后转化为对路况的理解,然后形成控制的决策,这就是robot,所以robot需要长得像人吗?我们面临的机器人产业是非常宽泛的。
1956年,AI这个词汇诞生,当时科技领域的先贤者召开了AI会议,提出了非常有远见的思考:怎么让机器仿真,实现智能?当然,他们的思想不是最早的,更早可以追溯到莱布尼茨,他最早提出通过数据演算出智能能力。
这些先贤者不仅有远见,而且还过分乐观,他们认为智能的基本问题可以在一个夏天解决,但是这个问题解决了吗?没有。维基百科词条“AI winter”列出了很多失败案例,为什么在长达的五六十年里面煽起大家那么多的热情,却没有产生我们期待的路径呢?
过去绝大部分的AI系统,更多以科学演绎的方式,演绎的概念就是类似“一生二,二生三,三生万物”,从一个基本法则出发,推导出一个纷繁复杂的系统(归纳是从纷繁复杂的世界提炼出简单的规律。以前受自然科学的研究影响,都是以不言自明的公理出发研究,比如认定上帝造人,但是以这样的思维出发会导致人工智能过于简单)。传统基于规则的AI系统没有成果,形成了很多的教训:
教训1:这个世界是纷繁的,存在着很多因素和要素,彼此之间有复杂的影响,形成复杂的网络和系统,这难以用一个公式来描述;
教训2:有很多因素和参量,你观测不到,所以系统具备不确定性。现实以概率运行,如果你用确定性的规则,没办法掌握这样的复杂系统,我们要采用基于统计的概念;
教训3:现实世界纷繁复杂,你很难完整描述,从数据中不断学习、对问题的理解,从而随着数据演化和进化是关键,这也就是我们今天讲的大数据时代的意义所在,本质上数据提供了我们了解世界的可能。随着数据演化,学习能力是一个关键。
我认为过去60年AI的一个总结是:基于规则的系统,统治了过去的AI时代。现在需要进入数据驱动的系统,把数据导到机器里面,机器通过消化和吸收生成对世界认知的模型。
我们再探讨些本质性的AI问题,归结出最简单的形式:通过观测到的现象、数据、知识,映射成预测、判断。比如,你输入一个图像,然后输出“物体”的名字,这样的映射就是图像识别;你输入一个语音讯号,然后输出“文本序列”,这是语音识别;你输入一段话,然后输出“解析的树状结构”,这是自然云储;你输入车辆行使周边路况的情况,然后输出“控制决策”,这是自动驾驶。
我们面临的很多问题是:如何从数据中学习映射函数,形成训练样本?比如把多个图片定义为“长颈鹿”的标签,系统通过训练学习,然后再给出类似的新图片的时候,该图片也能自动打上这个标签。
从有限推导无限,是不可能的,除非你提出假设,没有假设,就没办法做出判断。在古代,古人的智慧说“近朱者赤,近墨者黑”,就蕴涵了一个朴素的智慧,就是判断的时候一定隐含了假设:两个在某些方面相似的人,在其它方面具有相似的特征和特性。
这就反映到人工智能大数据学习的本质问题:假设的合理性。我们希望从数据得出的结论是简单的、光滑的,而不是复杂的,所以哲学上有一个词汇:剃刀原理,也就是能够同时解释某个现象的几条规律里面,我们喜欢选择其中最简单的规律。总而言之,我们希望能够找到一个规律,既能找到观测的样本,又得出简单的结果。