如果这次AlphaGo没有打败李世乭,那还要多久呢?IBM深蓝从进入大师级别到比赛击败世界冠军花了四年。AlphaGo应该会比深蓝更快提升自己,因为深蓝需要新版本的硬件,和针对Kasparov的人工调节优化,而AlphaGo是基于谷歌的硬件计算平台,和相对通用的深度学习 算法 。所以,几个月太短,4年太长,就预计1-2年之间吧。
从国际象棋到围棋,到底是不是巨大的突破呢?肯定是的,在这篇文章里面(在国际象棋领域,电脑已经可以战胜人脑,那么围棋领域电脑还差多远? - 计算机 ),第一位回答者分析了围棋的复杂度为10^{172} 而国际象棋则只有10^{46} 。在1997年深蓝击败世界冠军时,大家都认为:深蓝使用的是人工调整的评估函数,而且是用特殊设计的硬件和”暴力“的搜索 (brute-force) 地征服了国际象棋级别的复杂度,但是围棋是不能靠穷举的,因为它的搜索太广(每步的选择有几百而非几十)也太深(一盘棋有几百步而非几十步)。而AlphaGo的发展让我们看到了,过去二十年的发展, 机器学习 +并行计算+海量数据是可以克服这些数字上的挑战的,至少足以超越最顶尖的人类。
AlphaGo 若打败了世界冠军,就意味着计算机超越人脑?或者可以思考了吗?我的回答:
在可以凭逻辑分析推算的问题上,机器即将远远把人类抛在后面。机器速度会越来越快,学习能力会越来越强,数据会越来越多。当年,大家讨论“国际象棋输给机器不算什么,围棋才是真正的智慧”只是我们人类维护自己尊严但是不实际的幻想!今天,我们该面对现实了!
在 大数据 + 机器学习 +大规模并行计算的时代,我们将看到无数的商机和产品,能够在预测、分析、推荐等方面,产生巨大的商业和用户价值。不过,这些解决方案和人类相比,其实没有什么意义,因为人差太远了(比如说:推荐引擎将能推荐你最可能会买的产品、想吃的菜,想认识的人;自动交易能得到更高的投资回报和风险比例。。。)。
在感知方面,人类也将会被机器超越。今天的 语音识别 , 人脸识别 ,未来的自动驾驶,都是例子。
但是,对于那些科幻片的粉丝们:以上都还是冷冰冰的技术, 机器人 是否会人性化?这还是未知的。毕竟,在情感、喜怒哀乐、七情六欲、人文艺术、美和爱、价值观等方面,机器离人还差的很远,甚至连基础都没有。对 人工智能 的研究者,这是下一个挑战。对我们人类,在下个突破之前,我们还是多发展右脑吧!
P.S. - 也许有人好奇,为什么这个话题我说了这么多,因为在1986年,我在读书时,曾经开发了一套黑白棋系统(复杂度10^{28} ),击败了黑白棋的世界团体冠军,而当年的那套系统也有(非常粗浅的)自我学习的能力。有兴趣的网友可以在这里看到我当年的文章:A pattern classification approach to evaluation function learning ) 。