这两年,人工智能接连攻克了图像识别、语音识别、自动驾驶等多个难题,简直是处于宇宙中心。不管是资本、媒体还是创业者,都对这个领域怀有极大的热情。
对于吃瓜群众来说,观感大概是这样:不知不觉,人工智能创业公司就到处都是了,各大巨头也纷纷入场;一夜之间,AlphaGo狂扫一波顶级棋手,笑傲世界棋坛;下一步,大家是不是该担心普通人的饭碗不保,以及未来会被机器人奴役了?
亚里士多德对自身智能及其模拟也曾发出过天问
然而假如我们认真地把目光投向这个上可追溯至公元前300年,下至1956年才正式得名“Artificial Intelligence”的领域,就会发现,其实引起这一波狂潮的不是“人工智能”本身,而是处于这个领域里的
机器学习中的一项技术——深度学习。
通过构建人工神经网络,它第一次解决了许多人们无法触及的难题、让人工智能前所未有地和人类的生活产生交集,也因此获得了最大限度的关注。
然而深度学习,真的如此神乎其神吗?它有没有致命缺陷,未来又在哪里?记者难以回答,又充满好奇,所以踏上了一条寻找“深度学习”真正意义的道路。在这条路上,我采访了AI领域的创业者、学者、投资人,还注册了EDX上的人工智能课程。以下,是我的初步答案。
曾经的“人工神经网络”走上神坛
在谈论这个问题之前,我们首先要明确一点——不管是深度学习还是机器学习,都不能和人工智能划等号。
除了机器学习之外,人工智能还有推理、规划、交流等多个分支。深度学习是指“依赖于神经网络的机器学习”,主要通过模仿人类的神经网络来训练电脑、以解决各种问题。比如卷积神经网络,就是模仿人视觉的形成规律而构建的。
他们之间的关系大概是这样的:
深度神经网络、机器学习及人工智能的关系 | 图片来自混沌巡洋舰
总的说来,如今大家谈论的“深度学习”其实就是“人工神经网络”的一次复兴。数十年前,许多学者曾经刻苦钻研过它,只是由于当时技术的限制,计算能力不足,神经网络很小很浅,它在吸引一波注意力之后回归沉寂,也令投资人对它失去了兴趣。
随着基础设施领域的进步,计算机的运算能力及数据资源的积累能力在不断提高,数学、系统控制、经济等领域的技术也在不断融合,人工神经网络技术又再一次走上了历史舞台。然而这时候,上一个“人工智能冬天”的影响犹在,于是有识之士给它换了个名字来进行下一轮的发展……
毫无疑问,这个做法奏效了。
在21世纪,深度学习让人工智能第一次能够开始解决大众生活里的问题,存在感超强——它的特点是不再像以前一样依靠硬编码来解决各种问题,而是通过搭建一个模仿人工神经网络的架构,来让机器通过大量数据训练而自己找出其中的规律。
其中涉及多层复杂的人工神经网络,机器在经过大量训练后最终能够得出准确率极高的结果。
在许多领域,深度学习技术都带来了令人惊艳的结果:AlexNet,AlphaGo,自动驾驶,图像识别,机器翻译……
过去的人工智能研究中,被人诟病的一大特点就是机器给出的结果并不够准确——当年的机器翻译,能把“心有余而力不足”翻译成“伏特加酒香而肉已经臭了”……而拥有了深度学习技术之后,人工智能的准确度不仅大大提高,在许多领域,它还能达到人无法企及的高度。
深度学习的致命缺陷
然而“深度学习”(也就是“人工神经网络”)也有着一项几乎是与生俱来的缺陷:这些复杂的人工神经网络,不仅让向其他人解释变得困难无比,就连学者本身也无法考证他所创造的系统,是如何得出这个结果的。
这是一个可怕的特点——“Uninterpretable”。在学术界,这意味着人类无法知道机器给出这个结果的原因。
这一点有多重要呢?
它有可能会让你在不知不觉间,失去“发现错误”的机会。
在机器学习学者Rich Caruana的一项试验里,就出现了这样一个生死攸关的错误。在匹兹堡大学的医疗中心里,一群学者试图用机器学习来预测肺炎患者是否会患上严重的并发症。他们的目标是,通过让有较低患上严重并发症的病人提早出院,来减少床位压力及医护人员的负担。
除了人工神经网络以外,这些学者还尝试了一些其他方法,在对比这些方法的时候,他们发现人工神经网络给出的结果比任何其他方法都要准确。
然而当他们检查一种可以学习规则的机器学习系统的输出时,他们发现了这样一件事——它输出了一条规则,让所有已经患有哮喘的肺炎患者出院。
可实际上,哮喘患者非常容易患上肺炎的严重并发症。
这个奇怪的结果,来自于一项机器无从得知的规定:为了避免有哮喘的肺炎患者出现严重并发症,医院规定要对这些病人极为关注,也就造成了最后这些病人真正患上严重并发症的数量非常少。
要说机器错了,它按照已知信息已经给出了准确的结果;然而要是按照它的建议来处理,“我们可能会不小心害死一些病人。”学者总结道。
最重要的是,假如没有基于规则的方法,而是仅仅采用了人工神经网络的话,人们大概只能知道这一部分人被它标记“可以出院”,然后在一段时间后通过急剧升高的肺炎并发症数量而意识到这一切……
“人工智能只能分析数据,而数据建模与真实生活之间很难直接划上等号。”硅谷投资人郭威这样跟记者说。
当然,这也许并不会是一个永远的缺陷。已经有学者在研究人工神经网络的“行为习惯”(对就是像研究野生动物一样),希望能通过这个过程找到“解读”人工神经网络的方法。
同时,如今的深度学习技术还有另一个问题——它需要大量的数据作为训练基础,而训练所得的结果却难以
应用到其他问题上。
1997年,国际象棋世界冠军Garry Kasparov对阵Deep Blue
比如说,我们花很多时间训练一个电脑打DOTA2,它对各大英雄掌握极其熟练,随随便便就可以虐翻天梯9000分选手之后,再让它去玩一把王者荣耀(手机版MOBA游戏),它可能又会再次变成小学生……
再比如,曾经虐翻中日韩围棋天才的AlphaGo,在跳棋赛场上可能就束手无策了……
这也意味着花费了很大精力、数据来训练的模型,很难跨行业、甚至只是跨项目的应用。
同质化竞争,AI创业面临洗牌
虽然深度学习还不是一个完美的技术,但在它成功地“吸引了全世界的注意力”之后,工业界的进展正不断加速。
“如今
人工智能行业正处于一个‘四处开花’的阶段,能看到不同方向上的创新。”华盛顿大学人工智能博士徐宥向记者介绍道。他曾在FitBit领导机器学习团队,离职后也加入了AI创业浪潮,做了一个用AI帮助程序员更好地写代码的公司。
比如上文中提到的Google翻译,就在某种程度上实现了类似人类的迁移学习能力。毫无疑问,这也是一个未来很有希望的AI创业方向。
除此之前,我们还能在模型架构、训练方法等方面看到各类创新。比如DeepMind就提出了完全人工的神经网络架构,“这可能不是受生物启发,但是对这个问题理解很深刻才能做到。”徐宥说。
训练方法则意味着让机器找到“学习的方法”(learning to learn)。在人们训练自己家的小狗时,不同训练的方法会带来不同的结果;在训练机器的时候,这仍然成立。
虽然此刻我们很难预测深度学习乃至人工智能的未来,但是行业内有一个共识——“它会持续给市场带来惊喜,而如今以深度学习技术为主的人工智能创业生态也将面临洗牌。”郭威对记者说道。他是一个硅谷有名的早期投资人,在CBInsights刚刚发布的100家变革人工智能产业的创业项目榜单里,他投中的就有Skymind,Mode,Atomwise和TalkIQ。
根据VentureScanner今年发布的数据,全球范围内的人工智能公司数量达到1464家,其中有超过三分之一都是机器学习。
在任何一个对人类极其重要、竞争又面临同质化的行业而言,这个未来并不难以想象——在某个节点,巨头入场,end of story。
在那一天到来之前,AI创业者们可能需要多想想,如何抓住痛点,让技术与产业紧密结合,真正做出拥有商业价值的产品。
(本文转载自【硅星闻】,侵删)