爱吧机器人网 » 专题 > 观点 > 正文

AI辅助医疗科研 人工智能是药物研发的未来吗?

本文作者:周翔

导语:数据显示,所有进入临床试验阶段的药物,只有不到12%的药品最终能够上市销售,而一款新药的平均研发成本高达26亿美金。

雷锋网按:开发新药是是一项漫长而且低效率的工作。数据显示,所有进入临床试验阶段的药物,只有不到12%的药品最终能够上市销售,而且一款新药的平均研发成本高达26亿美金。

药物研发人员需要对各种不同的化合物以及化学物质进行测试,这个试验过程中的错误尝试耗费了太多的时间和金钱。由于需要测试的分子太多,研发人员不得不使用移液机器人一次测试几千种变体,然后选择最有效的变体进行动物模型或者细胞培养试验,希望其中一些最终能够进入人类临床试验阶段。

由于不断试错的成本太高,越来越多的药物开发厂商开始转向计算机和人工智能,希望利用这种技术来缩小潜在药物分子的范围,从而节省后续测试的时间和金钱。为了识别那些有很大潜力可以作为药物靶标的蛋白质的编码基因,这些厂商把希望寄托了算法上。目前,一些新的算法模型(包括近日发布在《Science Translational Medicine》上)增加了新层次的复杂性,用来缩小相关蛋白质、药物和临床数据的范围,以便更好地预测哪些基因最有可能让蛋白质和药物结合。

“许多原因都可能导致药物研发失败。”遗传流行病学家Aroon Hingorani说,“然而,其中一个主要的原因是没能针对疾病选择正确的靶标。”一种药物可能在细胞、组织、以及动物模型的早期实验中显示初步的前景,但是这些早期实验往往过于简单,很少使用到随机盲法实验进行对照。科学家们会使用这些结果来预测哪些蛋白质可以作为药物标靶,但是由于这些研究往往规模很小而且时间较短,因此有很多因素会造成误判。

然而,Hororani的小组并没有依赖这些有局限性的试验,他们建立了一个将基因信息、蛋白质数据结构和已知药物的作用过程相结合的预测模型。最终,他们获得了将近4500种潜在药物靶标,相比之前预测的可成药人类基因组数量,翻了一倍。然后,两名临床医生梳理出了具有正确形状和化学物质的144种药物,除了那些已经发现的可与之相结合的标靶蛋白外,这些药物还可以与其他的蛋白质结合。由于这些药物此前已经通过了安全测试,这意味它们可以很快被用于治疗其他疾玻对于药物开发商来说,时间就是金钱。

研究人员估计,大约15%~20%的新药成本都耗费在探索阶段。通常情况下,这意味着高达几亿美元的支出,以及3~6年的工作。如今,有人希望通过AI将这一过程缩短至几个月,并大幅降低研发成本。不过,目前市场上还没有一款药物是AI系统一开始挑选出来的,但是他们正在走上正轨。

Hingorani的合作者之一是BenevolentAI生物医学信息学副总裁。BenevolentAI是一家英国AI公司,最近刚刚与Janssen(强生旗下子公司)签署了一项收购和开发临床试验候选药物的协议。他们计划在今年晚些时候开始IIb阶段的试验。(IIa阶段会先入组少量受试者,确立合适的治疗剂量;IIb则是在a的基础上有效组扩大样本量,明确剂量等有效性、安全性。)

此外,其他制药企业也在纷纷跟进。据雷锋网(公众号:雷锋网)了解,上个月,日本眼药巨头Santen与位于Palo Alto的twoXAR公司签订了一份协议,Santen将利用twoXAR的AI技术来确定针对青光眼(glaucoma)的候选药物。而几个星期 之前,两家欧洲公司——Pharnext和Galapagos也宣布展开合作,开发AI系统模型用来寻找神经退行性疾病(neurodegenerative diseases)的新疗法。

但是,长期从事药物开发研究的Derek Loewe在《Science》的个人博客上撰文称,他对于这种纯粹的计算方法持怀疑态度。“从长远来看,我并不觉得这个东西是不可能的。”他说,“但是如果有人告诉我,他们能预测所有这么多化合物的活动,那么我可能会认为这是在胡说八道。在相信之前,我想看到更多证据。”

像twoXAR这样的公司就正在努力建立起这样的证据。去年秋天,他们与斯坦福大学的Asian Liver Center(亚洲肝病中心)合作,为成年肝癌患者筛选了25000种候选药物。他们利用自己开发的计算机软件,结合遗传、蛋白质组学、药物和临床数据筛选了出了10种可能的药物。

Asian Liver Center的主任Samuel So对结果非常惊讶,因为其中几种利用计算机软件筛选出的药物和实验室研究人员的预测相同,所以他决定测试所有的10种候选药物。其中最有希望的一种药物,能够杀死5种不同的肝癌细胞,并且没有伤害到健康细胞,现在正准备进行人体试验。目前,唯一一款针对同一癌症的药物花费了5年时间才获得了FDA(美国食品药品监督管理局)的批准,而twoXAR和斯坦福到现在为止才用了4个月。

令人兴奋的是:对于失败率如此高的行业,即使是很小的进步,也可能撬动数十亿美元的市场,更不用说那些那些可能因此被拯救的生命。但是,除非通过AI系统发现的药物真正上市销售,否则这个行业的研发模式不会发生根本性的变革。

(原标题:人工智能是药物研发的未来吗?)


上一篇:任正非谈华为做人工智能:不能浮躁 不要遍地都是智能化!
下一篇:价格降了,内容也有了,VR为什么还是没人买?
精选推荐
改变保险市场的格局:无人机如何通过更快的估算、响应时间和利益交付来使消费者受益
改变保险市场的格局:无人机如何通过更快的估算、响应时间和利益交付来

[2018-12-08]  市场研究公司IHS Markit预测,到2020年,专业无人机市场将通过农业,能源和建筑等行业利用测量,制图,规划等技术实现77 1%的复合年增长率(CAGR)。与此同时,消费者无人......

麻省理工最新机器人“装配工”未来可建造太空基地
麻省理工最新机器人“装配工”未来可建造太空基地

[2019-10-17]  两个机器人原型把一系列小单元组装成大结构体麻省理工学院科研人员最近提出一种新型机器人技术,即一种小型机器人系统,能够自主地用统一规 ...

麻省理工正研究植物机器人 让植物自主控制机器人
麻省理工正研究植物机器人 让植物自主控制机器人

[2018-12-08]  控制论通常指人类用机器人部件增强自己。我们听说过动物机器人或昆虫机器人,但我们很少听说植物机器人对吧?一个机器人其实是对植物有很大益处的,因为一般植物根本无法移动......

美国喷气推进实验室的AI驱动无人机挑战人类飞行员
美国喷气推进实验室的AI驱动无人机挑战人类飞行员

[2017-12-08]  随着无人机及其组件越来越小,效率越来越高,功能越来越强大,我们已经看到越来越多的研究开始让无人机自主飞行在半结构化的环境中,而不依赖于外部定位。 宾夕法尼亚大学在......

CES 2018:英特尔推出49量子位芯片争夺量子霸权
CES 2018:英特尔推出49量子位芯片争夺量子霸权

[2018-01-10]  在与Google、IBM的一场关于建立量子计算系统的马拉松比赛中,英特尔通过了一个关键的里程碑。近日,这个科技巨头已经推出了一个49个量子位 ...

Waymo:人性和行为心理学才是无人驾驶最大的挑战
Waymo:人性和行为心理学才是无人驾驶最大的挑战

[2019-11-03]  自动驾驶汽车作为AI领域内最大的挑战之一,谷歌致力于其研发已有十余载,现在他们逐渐意识到,最困难的是如何让人们享受驾驶的乐趣。这是一 ...

MIT用深度学习处理3D点云数据 应用于无人汽车等领域
MIT用深度学习处理3D点云数据 应用于无人汽车等领域

[2019-10-23]  如果你见过自动驾驶汽车,也许会对车顶上那个一直在旋转的圆柱体感到好奇。这是一个雷达传感器,无人驾驶汽车依靠它在现实世界中进行导航。 ...

人工神经网络技术解码人类行为和想象时的大脑活动信号
人工神经网络技术解码人类行为和想象时的大脑活动信号

[2017-08-23]  为搜索引擎过滤信息,棋盘游戏对弈,识别图像 人工智能在某些任务中远远超过了人类智能。来自弗莱堡由神经科学家私人讲师Tonio Ball博士领导的几个杰出的BrainLinks-Bra......

本周栏目热点

2020年中国AI基础数据服务行业发展报告

[2020-04-03]  核心摘要:目前人工智能商业化在算力、算法和技术方面基本达到阶段性成熟,想要更加落地,解决行业具体痛点, 需要大量经过标注处理的相关 ...

[1970-01-01]    从首尔清潭洞SM娱乐公司大楼代表办公室的落地窗可以清晰地眺望对面的汉江。李秀满会长介绍拥有代表办公室和录音室的建筑物是工作室中心 ...

[1970-01-01]    虽然我国经济增速下降,通缩若隐若现,但由于我国劳动力人口在2012年已经达到顶峰,之后总量呈逐年下降之势,所以即使近几年产业工人工 ...

腾讯思享会:探讨智能社会与人类未来

[1970-01-01]    人类在享受开车的过程时,在不久的将来可能让机器开车,人类如不是理性的控制机器人,又将一场持久的大战。  以智能社会与人类未来为 ...

[1970-01-01]    机器人发展到今天到了重新定义的时候,机器人拥有人类的感知和思维、应用到更多领域,成为现代机器人产业发展的新方向,由此看出中国机 ...