爱吧机器人网 » 专题 > 观点 > 正文

人工智能最好的变现方式 能让王思聪没币可撒

曾记得十几天之前否?那时我们踌躇满志的跨进了2018,满怀着对未来的渴望和珍重……然后我们惊奇的发现,2018第一个火起来的词叫“撒币”。

不是我说啥,这可真出戏啊。

可能是人工智能最好的变现方式,可以干到王思聪没币可撒

似乎一夜之间,直播答题和这个叫做”撒币”的关键词就火了。王思聪的冲顶大会、映客的芝士超人、花椒的百万赢家,一时之间大佬们疯狂争当“大撒币”,人民群众则纷纷出头相当被币砸到的那个幸运儿。

当然了,不管这些平台们如何“撒”,最终“币”还是要回到他们自己口袋里的,毕竟做生意是为了赚钱,搞出来这么大场面当然是为了放后招,没听说过哪位出题让人答是为了做慈善的。除非…除非AI化妆成选手,也来答个题,说不定能干到王思聪们没币可撒…

毕竟,答题也是讲科学的对不对?

AI答题这件事其实也不新鲜,不信你百度输入一个“长城有多长”之类的,马上就会给你跳出来答案。这里就是用了AI的专业答题姿势:知识图谱。

借着直播答题的春风,今天讲讲知识图谱的故事吧。虽然在机器视觉、语音交互等“网红技术”面前,作为AI重要分支之一的知识图谱似乎不那么出位。但是以 应用 度和脑洞指数来说,这个技术绝对当仁不让。更重要的是,在“AI感知”通向“AI理解”的大路上,知识图谱近乎是无法绕开的一道关卡。

更更重要的是——他能帮你答题啊。

知识图谱是什么鬼?

知识图谱这个概念被提出并不算太久,但是要追根溯源理解这个技术到底是玩什么的,那可能真要往上倒腾几十年才行。

上世纪40年代,人工智能被提出之后,无数科学家们就开始琢磨,到底用什么方式能让机器模拟出人的智慧呢?琢磨来琢磨去,人对于信息能够进行关联理解似乎是个路子。所谓信息关联,就是人类在接受一个信息后,会把它放在记忆中进行归纳和调用。比如说你打小认识了你三舅,绝不可能过几年管他叫二哥。

利用这个思路,上世纪50年代末,学术界提出了语义网络(semantic network)的设想,打算把数据进行结构化的处理,让单个信息组合成有联系、能共鸣的“知识”。今天我们用到的很多技术都来源于语义网络,比如机器翻译、自然语言处理等等,知识图谱也是其中之一。

上世纪80年代,受到多方面刺激的地球人开始了一次AI复兴运动,而这次运动的主角,就是各国开始打造专家系统和知识库。那时候科学家们相信,如果把人类大量知识进行逻辑化关联和语义网络存储,最终人类就能打造出全知全能,啥啥都懂的人工智能。可惜好景不长,最终AI没等来呢PC先来了,专家系统纷纷被弃置。但是海量知识构成的知识库却成为了宝物流传了下来。

2002年,基于语义web技术和Freebase等优质知识库,谷歌宣布推出了知识图谱(Knowledge Graph)概念,并在2013年投入使用。所谓知识图谱,实际上是建立在网页百科知识库基础上,利用语义网络进行知识关联的技术。它可以用来帮助学术人员快速搜集和理解信息,也可以用来分析情报,辨别信息真伪。在产业端则为搜索、内容推荐和智能问答提供了基础,成为今天AI领域不是十分热门,却也足够强势的一个技术类别。

如果说了这么多还没明白,那就举个直白的例子吧:

假如你这几天很好奇一个叫PGone的词为啥火了。然后你去搜索一下,结果给你推荐的词是PGtwo、PGthree…那你就跟没搜一样。假如蹦出来两个词,一个是贾乃亮一个是地沟油,那么你就了然了嘛…

所谓的知识图谱,就是让智能体去理解知识之间网络关系,并能主动以此提供服务的技术。

今天的知识图谱专治各种“撒币”

假如你以为本文到此就该结束了,那么你又错了。

上文说了知识图谱专治各种“大撒币”行为,并不是随便讲讲的。我们要知道,2002年知识图谱技术假如跟王思聪刚一波正面,那是基本没有胜算的。

这里有几种可能:首先是假如你的知识库是更新到前年的,人家问你PGone的嫂子是谁你怎么办?或者人家不问你长城有多长,问你最长的墙有多长怎么办?

在考教真人的直播答题过程中,可能面临各种语言上的调整、提问方式的改变,以及加入最新信息。这都是几年前基于单一结构知识库的知识图谱技术难以胜任的。

这就把知识图谱难住了吗?不能够,毕竟为答题而生,必须要搞点新高度出来才行。

这项技术在近几年间发生了重要变化,比如:

1、大数据+机器学习带来了史无前例的效率契机。

今天的AI复兴,是建立在机器学习驱动大数据的基础上的,知识图谱也是如此。举例来说,搜索引擎知识图谱技术,是建立在搜索数据和百科、问答等数据库之上的。数据本身的优质化是知识图谱运行的基础。而在机器学习、深度学习领域的积累,则让图谱技术实现了及时化、逐步完善图谱关联强度和理解力提升。换句话说,知识图谱技术正在变得愈发即时性与可成长。

2、语音交互成为启动知识图谱的新形式。

知识图谱想要真的为人类所用,那么就不能是人类用固定方式去出发知识图谱的模板。而应该是知识图谱主动理解人类的语言和思维习惯,做到主动输出服务。这就需要知识图谱与语音交互紧密结合。

3、强语义理解能力成为关键。

能听懂“长城有多长”,却听不懂“长城从东到西一共多少距离”的知识图谱,显然是知识没谱。深度学习各种语意、语义、语序和方言的知识图谱能力,也成为了目前知识图谱技术的唤醒核心。

这几种能力加持下,把知识图谱伪装成选手去搞点“撒币”,显然已经不算什么了…但是如果只干这点事,其实也蛮亏的。

撒出一个明天

无论是语音交互还是机器视觉,我们今天正在努力教会AI一件事,就是识别。可是,在识别之后呢?AI下一步要干什么?

识别的下一步当然是理解和处理,但如果想让AI开启这些能力,很多人都认为,知识图谱的爆发将是AI下一步的必经之路。

今天知识图谱的核心,在于通过数据生成可视化的知识链条,用链条形成网络,利用网络来进行预测、生成自动化,最终生成机器主动提供的智能化服务。

要知道,人类理解世界并不是基于一个个散乱的信息,而是基于信息背后的“知识”。

我们期待的知识图谱技术,是通过这种技术的完善,把AI调整到主动输出服务模式。经典计算阶段是你想到的,电脑帮你做出来。而知识图谱时代,是你想不到的,AI可以想到。

能做到这一步的AI技术,当然不会只满足去答答题,做个直播。人家的使命是改变世界好不好?

其实,知识图谱作为一种隐藏的后端技术,今天已经悄然布局在了我们的生活。比如我们今天在百度搜“李白写过哪些饮酒诗?”,已经不是跳出来有这些关键词的网站,而是直接跳出来你的答案,这背后就是知识图谱即使已经解答了你的问题。

更重要的是,知识图谱技术作为AI交互手段的必要触达点,正在为其他AI产业提供帮助,比如智能处理、无人驾驶

更远的未来,或许是利用知识图谱技术达成物联网间的协作、人机交互的全新升级,那么最终所能抵达的,远远不是答题这一件小事而已。

所以呢,直播平台上谁给谁撒币,谁是大撒币,其实也不是很重要了。真正重要的是,技术正在努力把未来的币,撒到现在的土壤里。


上一篇:聂卫平:人工智能不会影响围棋文化魅力
下一篇:手机AI是蓝海也是血海
精选推荐
英伟达用联合学习创建医学影像AI 可共享数据和保护隐私
英伟达用联合学习创建医学影像AI 可共享数据和保护隐私

[2019-10-14]  英伟达(Nvidia)和伦敦国王学院(King’s College London)的人工智能研究人员利用联合学习训练了一种用于脑肿瘤分类的神经网络, ...

谷歌大脑发布ROBEL基准 鼓励用低成本机器人训练AI系统
谷歌大脑发布ROBEL基准 鼓励用低成本机器人训练AI系统

[2019-10-11]  训练AI系统的机器人D& 39;Claw和D& 39;Kitty用于控制机器人的人工智能系统,测量其性能所使用的基准通常仅限于为工业环境设计的昂贵硬件, ...

Waymo:人性和行为心理学才是无人驾驶最大的挑战
Waymo:人性和行为心理学才是无人驾驶最大的挑战

[2019-11-03]  自动驾驶汽车作为AI领域内最大的挑战之一,谷歌致力于其研发已有十余载,现在他们逐渐意识到,最困难的是如何让人们享受驾驶的乐趣。这是一 ...

麻省理工正研究植物机器人 让植物自主控制机器人
麻省理工正研究植物机器人 让植物自主控制机器人

[2018-12-08]  控制论通常指人类用机器人部件增强自己。我们听说过动物机器人或昆虫机器人,但我们很少听说植物机器人对吧?一个机器人其实是对植物有很大益处的,因为一般植物根本无法移动......

[2018-01-26]  纽约时报的报道,德国的研究人员已经开发出一种长约七分之一英寸的机器人,首先看起来不过是一小块橡皮条。然后它开始移动。机器人走路,跳跃,爬行,滚动和游泳。它甚至爬出......

揭秘达芬奇手术机器人
揭秘达芬奇手术机器人

[2018-04-19]  达芬奇手术系统是由美国Intuitive Surgical公司制造的机器人手术系统。美国食品和药物管理局(FDA)于2000年通过该标准,旨在利用微创手段 ...

人工智能民主化能否实现取决于科技巨头
人工智能民主化能否实现取决于科技巨头

[2017-12-29]  我们经常听到像谷歌和微软这样的公司说他们希望人工智能民主化。这是一个很好的词,民主化。 但这些公司如何界定“民主化”还不清楚,像AI本身一样,它似乎有点炒作的味道...

九台“猎豹”机器人组队踢球,麻省理工高材生们的高级趣味
九台“猎豹”机器人组队踢球,麻省理工高材生们的高级趣味

[2019-11-09]  本周,在麻省理工学院10号楼外草坪上展开了一场别开生面的足球比赛。在绿草如茵的基利安球场上,一群由人工智能驱动的机器人就是这场比赛的 ...

本周栏目热点

2020年中国AI基础数据服务行业发展报告

[2020-04-03]  核心摘要:目前人工智能商业化在算力、算法和技术方面基本达到阶段性成熟,想要更加落地,解决行业具体痛点, 需要大量经过标注处理的相关 ...

[1970-01-01]    从首尔清潭洞SM娱乐公司大楼代表办公室的落地窗可以清晰地眺望对面的汉江。李秀满会长介绍拥有代表办公室和录音室的建筑物是工作室中心 ...

[1970-01-01]    虽然我国经济增速下降,通缩若隐若现,但由于我国劳动力人口在2012年已经达到顶峰,之后总量呈逐年下降之势,所以即使近几年产业工人工 ...

腾讯思享会:探讨智能社会与人类未来

[1970-01-01]    人类在享受开车的过程时,在不久的将来可能让机器开车,人类如不是理性的控制机器人,又将一场持久的大战。  以智能社会与人类未来为 ...

[1970-01-01]    机器人发展到今天到了重新定义的时候,机器人拥有人类的感知和思维、应用到更多领域,成为现代机器人产业发展的新方向,由此看出中国机 ...