爱吧机器人网 » 专题 > 应用 > 正文

人工智能正在帮助4亿罕见疾病患者实现更有效的诊断

据统计,全球有4亿人患有罕见疾病。这个数字比美国总人口数字还大。此外,根据全球基因组织的相关资料显示,80%的罕见疾病由基因缺陷引起,而基因缺陷的准确诊断结果平均需要4.8年时间。这就是为什么30%的患有罕见疾病的儿童活不到五岁的重要原因之一。

此外,95%的罕见疾病并不存在获FDA批准的治疗。这也是件很无助的事情。好消息是,近年来兴起的人工智能和机器学习成了对抗罕见病的重要工具。

如今,业界已经有不少公司开发了各种平台,借助人工智能确认罕见疾病基因变异的根源,并提供给医学研究人员和业内人士使用。

其中一家公司是总部在以色列的Emdgene。Emdgene公司建的平台不仅可以扫描罕见疾病患者的DNA数据,还可以使用自然语言处理(NLP)阅读最新的医学文献。借此,该平台就能够找到病人遗传变异与病人目前状态之间相关的书面记录,进而加快病情诊断。Emdgene联合创始人兼CEO Einat Metzer解释说,假若没有这个平台,要做到这一点的话会是一个艰苦和耗时的过程。

他表示:“每个人的DNA都包含了数百万种无害的遗传变异,实验室里的遗传学家们必须从这么多变异中识别出导致某个疾病的一种变异。在不使用算法的情形下,他们通常是通过手动过滤这几百种基因变异。此外,他们还必须搜索现有的文献,以确保不会错过任何新发现的信息或其它证据。”

Metzer还表示,Emedgene机器学习算法可完成所有上述步骤,并自动识别致病的变异基因以及文献里和数据库里的支持证据。遗传学家所要做的,就只是审查产生的结果,而不是从头开始做整体分析。

另外,Emedgene上个月还推出了一种名为Pathorolo的新算法。这一算法可以计算一个具体的遗传病例可能得到解决的可能性,也可以用于重新评估过去未解决的病例——这样的病例占所有罕见遗传病例的60%之多。

Metzer 表示:“实验室一般会定期重新分析过去未解决的病例,希望新发布的信息或新生物信息学工具可以协助解决一些病例。这样的做法,通常可以将解决病例的百分比提高10%。但这个过程随着过去未解决病例的积累和不断增长而变得十分复杂,如果没有机器学习的帮助是不可持续的。而通过Pathorolo算法,我们就可以识别出那些过去未解决而今天有可能得到解决的病例,然后让实验室把时间和精力集中放在有望解决以及可定期再分析未解决的病例上。”

当然,除了Emdgene之外,也有不少公司正在将AI用于罕见遗传性疾病的诊断。比如,德国的初创公司Nostos基因组学。和Emedgene一样,Nostos基因组学也在利用机器学习处理病人的遗传变异及确定可能的原因。另一个有意思的例子是总部在美国波士顿的FDNA:今年一月FDNA在《自然医学》(Nature Medicine)杂志上发表了一篇论文(https://www.nature.com/articles/d41586-019-00027-x),论文详细介绍了FDNA打造的名为Face2Gene的智能手机应用程序,经过大量图像的训练,该应用程序可以识别出患有罕见遗传性疾病的人。

还有一些比较复杂的案例,比如Fabric Genomics公司。Fabric Genomics公司总部在美国旧金山,主打用AI进行各种遗传分析。据了解,Fabric Genomics拥有一些授权超过1000个临床实验室和学术机构使用的算法。其中,一些算法可用于筛选遗传变异体可能造成的罕见疾病,诊断成功率能达约50%,而业界的平均成功率则只有25%至30%。

Fabric Genomics的算法今年四月曾被美国圣迭戈的Rady儿童基因组医学研究所的研究人员采用,利用机器学习过程和临床自然语言处理(CNLP),研究所的罕见遗传性疾病诊断时长甚至创下了记录。具体来说,研究所通过使用整个系统协助诊断重症监护室的婴幼儿,在20小时内提供了基因组测序,共涉及95名患儿及97种遗传病,精确度达99%。

Rady儿童基因组医学研究所总裁兼CEO Stephen Kingsmore医生表示:“有些人称其为人工智能,我们称其为增强智能。病人护理自始至终都是医生的事。我们通过技术的力量可以迅速准确地确定遗传性疾病的根本原因,然后再迅速地将这一关键信息提供给重症监护室的医生,让他们能够专注地对那些艰难求生存的婴儿进行个性化护理。”

这些成功的案例表明,AI对罕见病诊断是一剂良方,对4亿患有罕见疾病的人来说更是如此。目前这些罕见疾病经常被医院忽视,医院也没有足够的资源来处理这些疾病。因此,AI和机器学习在这个领域的引入将让所有人受益。

上一篇:加拿大机器人辅助手术厉害了!癌症患者术后第2天痊愈
下一篇:那些很牛的“黑科技”,防疫抗疫时都干了啥?
精选推荐
机器人iCub作为嵌入式AI的标准机器人研究平台的重要性
机器人iCub作为嵌入式AI的标准机器人研究平台的重要性

[2017-12-24]  机器人的研究在过去10年中得益于一个具有嵌入式人工智能(AI)的标准化开源平台——人形机器人iCub。iCub最初在意大利被创建,如今在欧洲、美国、韩国、新加坡和日本的实验室......

集群机器人领域最新研究:一种用于探测未知环境的微型无人机群
集群机器人领域最新研究:一种用于探测未知环境的微型无人机群

[2019-10-26]  (图:无人机扩散至不同方向来探索环境。当一个无人机注意到另一个无人机在它的首选方向,它将试图飞到另一个方向。若首选方向冲突,低优先 ...

Crossbar将电阻式RAM推入嵌入式AI
Crossbar将电阻式RAM推入嵌入式AI

[2018-05-17]  电阻RAM技术开发商Crossbar表示,它已与航空航天芯片制造商Microsemi达成协议,允许后者在未来的芯片中嵌入Crossbar的非易失性存储器。此举是在先进制造业节点的领先代工厂选......

南加州大学机器人学家:机器人更适合粗暴的爱
南加州大学机器人学家:机器人更适合粗暴的爱

[2019-11-07]  图片来自JOHN MADERE GETTY IMAGES打是疼骂是爱,当人类粗暴的将物体从机器人手中敲掉,看似残忍,实际上却能帮助机器人找到最好的握持物 ...

人工神经网络技术解码人类行为和想象时的大脑活动信号
人工神经网络技术解码人类行为和想象时的大脑活动信号

[2017-08-23]  为搜索引擎过滤信息,棋盘游戏对弈,识别图像 人工智能在某些任务中远远超过了人类智能。来自弗莱堡由神经科学家私人讲师Tonio Ball博士领导的几个杰出的BrainLinks-Bra......

受大脑控制的机器人
受大脑控制的机器人

[2017-03-21]   想让机器人做我们想做的,首先,他得全面地了解我们。通常,这就意味着人类需要要付出更多。比如,教机器人复杂的人类语言或者把一项任务 ...

英伟达用联合学习创建医学影像AI 可共享数据和保护隐私
英伟达用联合学习创建医学影像AI 可共享数据和保护隐私

[2019-10-14]  英伟达(Nvidia)和伦敦国王学院(King’s College London)的人工智能研究人员利用联合学习训练了一种用于脑肿瘤分类的神经网络, ...

九台“猎豹”机器人组队踢球,麻省理工高材生们的高级趣味
九台“猎豹”机器人组队踢球,麻省理工高材生们的高级趣味

[2019-11-09]  本周,在麻省理工学院10号楼外草坪上展开了一场别开生面的足球比赛。在绿草如茵的基利安球场上,一群由人工智能驱动的机器人就是这场比赛的 ...

本周栏目热点

[2017-08-29]    8月25日,在日本木更津,狼型机器人超级怪兽狼站在稻田边,威慑可能危害庄稼的野生动物。当野生动物接近庄稼地,装有红外感应器的机器 ...

雾计算应用案例分析:无人机领域快递的应用

[2016-09-01]      导读: 无人机,是典型的物联网相关应用。传统的快递行业,面临着巨大的人员开销,设备成本,安全问题。然而,无人机快递,却可以精 ...

Air wheel平衡车虎嗅千里送车行:“卖萌”文创的故宫淘宝

[2015-12-23]     摘要:提到故宫,你会想起什么?恢弘气势、历史感十足?还是脑洞大开的一系列文创产品?近日,Airwheel的工作人员便带着Airwheel&虎嗅 ...

以品质立足世界,纳斯达克大屏上的Airwheel平衡车

[2015-12-23]     摘要:12月15日,Airwheel在美国证券交易所纳斯达克广告屏上对旗下的产品以及所推崇的出行理念进行宣传投放。在12月12日亚马逊全线封禁 ...

揭秘!越来越多编辑部开始自动化办公,AI会取代编辑吗?

[2018-05-22]  有人说,机器人和人工智能是下一场工业革命,它们会比以往的工业革命——蒸汽、电、计算机更具颠覆性,因为它们不仅仅会取代常规,还会取代 ...