爱吧机器人网 » 专题 > 应用 > 正文

AI与律师比赛审核保密协议,人类输了

编者按:昨天,一家坐落于以色列的初创公司 Lawgeex 举行了一场人机比赛:AI v.s. 人类律师,在 4 个小时内审查五项(共 14 页)保密协议,结果 20 名经验丰富的人类律师无论从时间还是准确度上都远逊于 AI,被机器完败。这向人们证明了,AI 已经有能力接替人类在法律领域的某些工作。

\

机遇与挑战

人工智能对商业产生的变革显而易见,在全球有 6000 亿美元的法律服务市场当然也不能幸免。据咨询公司 McKinsey 估计,22% 的律师工作和 35% 的律师助理工作都可以通过自动化来完成。显然,对于某些非核心的法律任务来说,机器应该比律师处理的更快且更好,例如合同审核工作。

2014 年成立的人工智能合同审查自动化解决方案公司 LawGeex 在这方面做得尤为出色。他们认为合同审查是现在每个公司都会需要的且数量庞大,例如典型的 1000 强企业,差不多在任何时候都会维持 2 万到 4 万个活跃的合同。但是据国际合同和商业管理协会(IACCM)调查,有 83% 的企业对其合同流程不满意,因为例如交易中常见的保密协议(NDA)一般需要一周或更长的时间才能批准下来,这大大降低了交易的速度。

而从另一方面对律师来说,审核这些合同大多只是重复性体力劳动,浪费了大量的时间,而又不得不做。

这样的市场需求似乎是在召唤着人工智能的到场,但事实并不是那么容易,在法律文件方面训练人工智能模型其实还有蛮多独特的挑战的。

首先是法律术语——通常这些法律语言复杂且违反直觉,这让训练变得十分困难。对于合同审查和批准,自然语言处理(NLP)和现成的解决方案根本不起作用,没有现有的计算语言模型能够连贯地阅读法律术语。

其次是高精度的要求——律师的主要职责是控制甚至降低其公司或客户的风险,准确性至关重要。在法律人工智能的训练中,单一文档分析要求的准确性要高得多,比如大数据「情感」分析(使用文本分析挖掘不同数据来源以获得意见以预测趋势的过程)。

针对第一个问题,LawGeex 创建了新的法律「语言」——专有的法律语言处理(LLP)和法律语言理解(LLU)模型。律师和工程师团队通过给 AI 展示大量的法律文件,教授了 LawGeex AI 相关的法律文献。当 AI 学习法律术语时,法律训练人员会指出它需要识别的概念。LLP 技术允许算法识别这些概念,即使这些词组它从来没有见过。

另一方面他们采用监控概念,而不是关键字 - LawGeex AI 的操作方式要比迟钝的「关键字搜索」复杂得多。关键字搜索可能过多或过少,因为相关文档中可能没有相关文字,或出现在不相关的文档中。但是真正的人工智能应该能够识别出一个概念,不管它是什么样的词组或出现在文档中的什么地方。

比赛

这次比赛的内容为四小时审查五项保密协议(NDA),并确定 30 个法律问题,包括仲裁、关系保密和赔偿等。如何准确界定每个问题是比赛的得分要点。

\

需要说的是参加比赛的这些律师都是拥有十多年从业经验的律师,而 LawGeex AI 也不是从头开始学习。按照 LawGeex 的介绍,LawGeex AI 已经接受了足够的训练,不光是 NDAs,它还可以检测十几种不同的法律合同,从软件协议到服务协议到采购订单。但在这项具体的比赛中,它仅关注 NDAs--最常见的商业合同形式。

比赛的结果预料之中,人类律师输了。

\

人类律师的平均准确率仅为 85%,而 AI 的准确率达到了 95%。时间上,AI 仅仅用了 26 秒就完成了任务,而人类律师平均需要 92 分钟。值得注意的是,人工智能在这些合同中最高可以达到 100%的准确率,而其中人类律师的最高得分仅为 97%。
\

\

意义

尽管这并不是法律领域人类与 AI 对抗第一次比赛(也不会是最后一次),但它是 AI 首次与真实的有经验的律师之间的 PK。这使得比赛的结果在一定程度上可以说明,法律领域的某些工作,AI 可以比从业多年的人类专家完成的更好。

这可能会引起法律从业者的恐慌——难道在不久的将来律师要被机器所取代了吗?雷锋网认为,这真的是多虑了。目前来看,AI 在各个领域中还只能从事部分重复性工作。对于律师来说,AI 的出现其实是一种福音,它可以帮助自己处理掉大量重复性劳动工作,这一方面可以加快自己的工作速度,另一方面也能够给自己足够多的时间专注于那些真正有创造性的工作当中。

上一篇:意大利惊现机器人快递员 网友看后表示心疼
下一篇:人工智能如何加强网络安全?
精选推荐
7种常见的机器人焊接类型
7种常见的机器人焊接类型

[2017-12-17]  机器人焊接是工业领域最常见的机器人应用之一,近几十年来主要由汽车行业驱动。机器人焊接在完成大批量,重复性的焊接任务时效率最高。...

机器人工程师具体都做什么?
机器人工程师具体都做什么?

[2017-12-08]  机器人工程师是幕后设计师,负责创建机器人和机器人系统,能够执行人类无法完成或不愿意完成的任务。 通过他们的创造,机器人工程师帮助工作更安全,更轻松,更高效,特别是......

美国Natilus公司试飞水上无人货机 设计简单成本降低
美国Natilus公司试飞水上无人货机 设计简单成本降低

[2017-12-28]  Natilus创业公司成立于2014年,其梦想是建造大型无人机,以半价提供比船舶快得多国际货运。在十二月份,Natilus计划在旧金山湾测试一个9米翼展的小型原型无人机的水上滑行能力......

麻省理工又秀神技:推出如魔法般跳跃的方块机器人集群
麻省理工又秀神技:推出如魔法般跳跃的方块机器人集群

[2019-10-31]  几天前,小编向大家介绍过麻省理工(MIT)研发的一种自组装机器人集群(点此阅览),它们可以用统一标准的小单元自动组装出各种大型结构。 ...

基于生物启发的机器人很容易适应丢失附属器官
基于生物启发的机器人很容易适应丢失附属器官

[2017-12-17]  很多机器人被设计应用在危险环境,如灾难现场。在这些地方,他们的运动系统完全有可能被损坏。那这样会吓跑这些机器人吗?也许不是,如果它们像日本的东北和北海道大学创造的......

亚马逊计划建一个4000万美元的机器人中心
亚马逊计划建一个4000万美元的机器人中心

[2019-11-07]  爱吧机器人网消息,亚马逊11月6日宣布了一项计划,计划在美国马萨诸塞州韦斯特伯勒建立一个4000万美元、35万平方英尺的机器人创新中心。新 ...

可编辑神经网络,有望简化深度学习?
可编辑神经网络,有望简化深度学习?

[2019-10-04]  深度学习是一个计算繁重的过程。 降低成本一直是 Data curation 的一大挑战。 关于深度学习神经网络大功耗的训练过程,已经有研究人员 ...

谷歌宣布搜索算法重大升级,用BERT模型理解用户搜索意图
谷歌宣布搜索算法重大升级,用BERT模型理解用户搜索意图

[2019-10-26]  谷歌刚刚宣布,其搜索引擎的核心算法正在进行一项重大升级,这项升级可能会改变10%的搜索结果排序。此项升级应用了自然语言处理技术(BERT ...

本周栏目热点

[2017-08-29]    8月25日,在日本木更津,狼型机器人超级怪兽狼站在稻田边,威慑可能危害庄稼的野生动物。当野生动物接近庄稼地,装有红外感应器的机器 ...

雾计算应用案例分析:无人机领域快递的应用

[2016-09-01]      导读: 无人机,是典型的物联网相关应用。传统的快递行业,面临着巨大的人员开销,设备成本,安全问题。然而,无人机快递,却可以精 ...

Air wheel平衡车虎嗅千里送车行:“卖萌”文创的故宫淘宝

[2015-12-23]     摘要:提到故宫,你会想起什么?恢弘气势、历史感十足?还是脑洞大开的一系列文创产品?近日,Airwheel的工作人员便带着Airwheel&虎嗅 ...

以品质立足世界,纳斯达克大屏上的Airwheel平衡车

[2015-12-23]     摘要:12月15日,Airwheel在美国证券交易所纳斯达克广告屏上对旗下的产品以及所推崇的出行理念进行宣传投放。在12月12日亚马逊全线封禁 ...

揭秘!越来越多编辑部开始自动化办公,AI会取代编辑吗?

[2018-05-22]  有人说,机器人和人工智能是下一场工业革命,它们会比以往的工业革命——蒸汽、电、计算机更具颠覆性,因为它们不仅仅会取代常规,还会取代 ...